Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Transplantation
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemoattractant Signals and Adhesion Molecules Promoting Human Regulatory T Cell Recruitment to Porcine Endothelium

Authors: Ehirchiou, Driss; Muller, Yannick D; Chicheportiche, Rachel; Heyrani Nobari, Ruhollah; Madelon, Natacha; Schneider, Mårten K J; Seebach, Jorg Dieter;

Chemoattractant Signals and Adhesion Molecules Promoting Human Regulatory T Cell Recruitment to Porcine Endothelium

Abstract

Human CD4+CD25+Foxp3+ T regulatory cells (huTreg) suppress CD4+ T cell-mediated antipig xenogeneic responses in vitro and might therefore be used to induce xenograft tolerance. The present study investigated the role of the adhesion molecules, their porcine ligands, and the chemoattractant factors that may promote the recruitment of huTreg to porcine aortic endothelial cells (PAEC) and their capacity to regulate antiporcine natural killer (NK) cell responses.Interactions between ex vivo expanded huTreg and PAEC were studied by static chemotaxis assays and flow-based adhesion and transmigration assays. In addition, the suppressive function of huTreg on human antiporcine NK cell responses was analyzed.The TNFα-activated PAEC released factors that induce huTreg chemotaxis, partially inhibited by antihuman CXCR3 blocking antibodies. Coating of PAEC with human CCL17 significantly increased the transmigration of CCR4+ huTreg under physiological shear stress. Under static conditions, transendothelial Treg migration was inhibited by blocking integrin sub-units (CD18, CD49d) on huTreg, or their respective porcine ligands intercellular adhesion molecule 2 (CD102) and vascular cell adhesion molecule 1 (CD106). Finally, huTreg partially suppressed xenogeneic human NK cell adhesion, NK cytotoxicity and degranulation (CD107 expression) against PAEC; however, this inhibition was modest, and there was no significant change in the production of IFNγ.Recruitment of huTreg to porcine endothelium depends on particular chemokine receptors (CXCR3, CCR4) and integrins (CD18 and CD49d) and was increased by CCL17 coating. These results will help to develop new strategies to enhance the recruitment of host huTreg to xenogeneic grafts to regulate cell-mediated xenograft rejection including NK cell responses.

Country
Switzerland
Keywords

Cytotoxicity, Immunologic, Natural/immunology/metabolism, Swine, Cells, Cytotoxicity, T-Lymphocytes, Cell Communication, Cell Degranulation, Immunophenotyping, Regulatory/immunology/metabolism, Immunologic, 616, Cell Adhesion, Immune Tolerance, Killer Cells, Animals, Humans, Cells, Cultured, Cell Adhesion Molecules/immunology/metabolism, Immunophenotyping/methods, Cultured, Chemotaxis, Transendothelial and Transepithelial Migration, Endothelial Cells, Leukocyte, Flow Cytometry, Chemokine CCL17/immunology/metabolism, Coculture Techniques, Killer Cells, Natural, Chemotaxis, Leukocyte, Phenotype, Heterografts, Chemokine CCL17, Endothelial Cells/immunology/metabolism, Cell Adhesion Molecules, Signal Transduction, ddc: ddc:616

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!