
pmid: 34781580
As porous media play an essential role in a variety of industrial applications, it is essential to understand their physical properties. Nowadays, the super-dimensional (SD) reconstruction algorithm is used to stochastically reconstruct a three-dimensional (3D) structure of porous media from a given two-dimensional image. This algorithm exhibits superiority in accuracy compared with classical algorithms because it learns information from the real 3D structure. However, owing to the short development time of the SD algorithm, it also has some limitations, such as inexact porosity characterization, long run time, blocking artifacts, and suboptimal accuracy that may be improved. To mitigate these limitations, this study presents the design of a special template that contains two parts of data (i.e., adjacent blocks and a central block); the proposed method matches adjacent blocks during reconstruction and assigns the matched central block to the area to be reconstructed. Furthermore, we design two important mechanisms during reconstruction: one for block matching and the other for porosity control. To verify the effectiveness of the proposed method compared with an existing SD method, both methods were tested on silica particle material and three homogeneous sandstones with different porosities; meanwhile, we compared the proposed method with a multipoint statistics method and a simulated annealing method. The reconstructed results were then compared with the target both visually and quantitatively. The experimental results indicate that the proposed method can overcome the aforementioned limitations and further improve the accuracy of existing methods. This method achieved 4-6 speedup factor compared with the traditional SD method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
