
In the process of transition of Russian organizations of secondary professional education to educational standards of the third generation educational process is reduced to formation of students’ competences. This article presents methodology of creating integrated lessons of natural-science cycle (for example, in physics and informatics). These lessons are constructed on the basis of interdisciplinary integration and focused on task solution. The main purpose is to teach students how to solve particular tasks in physics with the use of informatics, in particular on the basis of algorithmization and programming (Pascal language). Didactic conditions, which are the basis of the algorithm of designing corresponding tasks, are described in this article. Structural components of the integrated lessons created on the traditional principle are marked out. During the research we observed that realization of all stages of the corresponding lessons in practice allows the teacher to create educational process over the borders of disciplinary basis. This approach helps to form generalization of knowledge. Being one of the most optimal forms of education, an integrated lesson allows students to solve various educational and professional problems in non-standard situations and stimulates their cognitive activity and their involvement in the process of education and their responsibility for the result which promotes an intensification of educational process.
quality assessment of training material assimilation, didactic conditions, integrated lessons, Construction industry, HD9715-9717.5, intersubject integration, secondary professional education, structural components of integrated lessons
quality assessment of training material assimilation, didactic conditions, integrated lessons, Construction industry, HD9715-9717.5, intersubject integration, secondary professional education, structural components of integrated lessons
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
