
Optimization of neural network topology, weights and neuron activation functions for given data set and problem is not an easy task. In this article, a technique for automatic configuration of parameters topology for feedforward artificial neural networks (ANN) is presented. The determination of optimal parameters is formulated as an optimization problem, solved with the use of meta-heuristic Multiple Particle Collision Algorithm (MPCA). The self-configuring networks are applied to predict the mesoscale climate for the precipitation field. The results obtained from the neural network using the method of data reduction by the Theory of Rough Sets and the self-configuring network by MPCA were compared.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
