Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Neurology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of the reperfusion after cerebral ischemia in neonatal rats using MRI monitoring

Authors: Fau, Sebastien; Po, Chrystelle; Gillet, Brigitte; Sizonenko, Stephane; Mariani, Jean; Meric, Philippe; Charriaut-Marlangue, Christiane;

Effect of the reperfusion after cerebral ischemia in neonatal rats using MRI monitoring

Abstract

Cerebral hypoxia-ischemia is an important cause of brain injury in the newborn infant. Our purpose was to study magnetic resonance (MR) imaging changes in P7 rat brains submitted to permanent or reversible ischemia. Ischemia was induced by permanent electro-cauterization of the middle cerebral artery combined with a permanent or a transient (50 min) common carotid artery occlusion. The early events during ischemia and reperfusion were investigated by T2-weighted images (T2WI) at 1 and 3 h and by serial diffusion-weighted images (DWI) during 3 h in a 7 T magnet with a standard weighted diffusion sequence (b=1282.04 s mm(-2)) and a SEMS sequence. Within the first hour after MCA occlusion, the T2WI areas of contrast enhancement increased to a mean volume of 12.9+/-6.4%, a steady state still detected at 3 h after the ischemic onset (10.5+/-2.5%). Contrast enhancement in DWI increased as soon as 15 min of ischemia in all animals up to 50 min after CCA occlusion. In permanent ischemia, DWI abnormalities volume then increased more slowly from 50 min to 3 h after CCA occlusion (+25%, n=5). In reversible ischemia, the DWI abnormalities volume either moderately decreased and reached a plateau (-8.4%, n=4) or dramatically decreased (-53.0%, n=3). Both T2WI and DWI evidenced a "patchy" pattern of recovery as also shown on cresyl violet-stained sections. In contrast to the adult, early ischemic injury in P7 rat brains is detected as an increase in hyper-intensities both in T2WI and DWI. Our data indicate that reperfusion is able to block edema evolution after neonatal stroke and that early T2WI and more accurately DWI allow to distinguish between different patterns of injury in reversible ischemia.

Keywords

Coloring Agents/diagnostic use, Time Factors, Contrast Media, Brain Edema, 616.07, Brain Ischemia, 618, Brain Edema/diagnosis/etiology, Oxazines, Brain Ischemia/complications/diagnosis/therapy, Animals, Brain/pathology, Coloring Agents, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, Staining and Labeling, Brain, Oxazines/diagnostic use, Magnetic Resonance Imaging, Benzoxazines, Rats, Diffusion Magnetic Resonance Imaging, Animals, Newborn, Ischemic Attack, Transient, Reperfusion, Ischemic Attack, Transient/diagnosis/therapy, ddc: ddc:616.07, ddc: ddc:618

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!