Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Schmalenbachs Zeitsc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
EconStor
Article . 2024
License: CC BY
Data sources: EconStor
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Control of Online-Appointment Systems When the Booking Status Signals Quality of Service

Authors: Isabel Kaluza; Guido Voigt; Knut Haase; Antonia Dietze;

Control of Online-Appointment Systems When the Booking Status Signals Quality of Service

Abstract

AbstractWe revisit a service provider’s problem to match supply and demand via an online appointment system such as a doctor in the health care sector. We identify in a survey that an extensive set of available appointments leads to significantly less demand because customers infer a lower quality of the service, as part of an observational learning process. We capture the quality inference effect in a multinomial logit framework and present a Markov decision process for solving the problem of releasing available slots of the appointment system to optimality aiming at maximizing the expected profits. We further evaluate several simple decision rules and provide management insights on which rule to apply under different generic scenarios. Different from current literature, offering all available appointments may lead to suboptimal results when accounting for the quality inference effect. The profit-maximizing strategy then is to offer a subset of the available appointments.

Related Organizations
Keywords

C61, Choice-Based Optimization, Stochastic Dynamic Programming, ddc:650, Markov, Appointment System, Discrete Choice

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Published in a Diamond OA journal