
En raison du manque de solutions analytiques pour la prédiction des taux d'usure des nanocomposites, nous présentons une méthode d'apprentissage automatique modifiée appelée Dendritic Neural (DN) pour prédire les performances d'usure des nanocomposites de cuivre-alumine (Cu-Al 2 O 3 ) qui ont une grande applicabilité en électronique. Cette modification vise à déterminer les poids optimaux de DN car ils ont la plus grande influence sur ses performances. Pour parvenir à cette amélioration, une nouvelle technique méta-heuristique appelée Artificial Hummingbird Algorithm (AHA) a été utilisée. Le modèle modifié a été appliqué pour prédire les taux d'usure et le coefficient de frottement des nanocomposites Cu-Al 2 O 3 qui ont été développés dans cette étude. Un revêtement autocatalytique de nanoparticules d'Al 2 O 3 avec de l'argent (Ag) a été effectué pour améliorer la mouillabilité, suivi d'un broyage à billes et d'un compactage pour consolider les composites. Les propriétés microstructurales, mécaniques et d'usure des composites produits avec différentes teneurs en Al 2 O 3 ont été caractérisées. Les taux d'usure et le coefficient de frottement ont été évalués à l'aide d'un test d'usure par glissement à différentes charges et vitesses. Le modèle développé à l'aide de l'algorithme AHA a montré une excellente prévisibilité du taux d'usure et du coefficient de frottement pour les nanocomposites Cu-Al 2 O 3 avec une teneur en renforcement allant jusqu'à 10 %.
Debido a la falta de soluciones analíticas para la predicción de las tasas de desgaste de los nanocompuestos, presentamos un método de aprendizaje automático modificado llamado Dendritic Neural (DN) para predecir el rendimiento de desgaste de los nanocompuestos de cobre-alúmina (Cu-Al2O3) que tienen una gran aplicabilidad en electrónica. Esta modificación tiene como objetivo determinar los pesos óptimos de DN, ya que tienen la mayor influencia en su rendimiento. Para lograr esta mejora se utilizó una nueva técnica metaheurística denominada Artificial Hummingbird Algorithm (AHA). El modelo modificado se aplicó para predecir las tasas de desgaste y el coeficiente de fricción de los nanocompuestos de Cu-Al2O3 que se desarrolló en este estudio. Se realizó un recubrimiento no electrolítico de nanopartículas de Al2O3 con plata (Ag) para mejorar la humectabilidad, seguido de molienda con bolas y compactación para consolidar los compuestos. Se caracterizaron las propiedades microestructurales, mecánicas y de desgaste de los compuestos producidos con diferente contenido de Al2O3. Las tasas de desgaste y el coeficiente de fricción se evaluaron mediante una prueba de desgaste por deslizamiento a diferentes cargas y velocidades. El modelo desarrollado utilizando el algoritmo AHA mostró una excelente predictibilidad de la tasa de desgaste y el coeficiente de fricción para nanocompuestos de Cu-Al2O3 con un contenido de refuerzo de hasta el 10%.
Due to the lack of analytical solutions for the wear rates prediction of nanocomposites, we present a modified machine learning method named Dendritic Neural (DN) to predict the wear performance of copper-alumina (Cu-Al 2 O 3 ) nanocomposites that have large applicability in electronics. This modification aims at determining the optimal weights of DN since they have largest influence on its performance. To achieve this improvement a new meta-heuristic technique named Artificial Hummingbird Algorithm (AHA) was used. The modified model was applied to predict the wear rates and coefficient of friction of Cu-Al 2 O 3 nanocomposites that was developed in this study. Electroless coating of Al 2 O 3 nanoparticles with silver (Ag) was performed to improve the wettability followed by ball milling and compaction to consolidate the composites. The microstructural, mechanical and wear properties of the produced composites with different Al 2 O 3 content were characterized. The wear rates and coefficient of friction were evaluated using sliding wear test at different load and speeds. The developed model using AHA algorithm showed excellent predictability of the wear rate and coefficient of friction for Cu-Al 2 O 3 nanocomposites with reinforcement content up to 10%.
نظرًا لعدم وجود حلول تحليلية للتنبؤ بمعدلات تآكل المركبات النانوية، نقدم طريقة معدلة للتعلم الآلي تسمى Dendritic Neural (DN) للتنبؤ بأداء تآكل المركبات النانوية النحاسية (Cu - Al 2 O 3 ) التي لها قابلية تطبيق كبيرة في الإلكترونيات. يهدف هذا التعديل إلى تحديد الأوزان المثلى لـ DN نظرًا لأن لها أكبر تأثير على أدائها. ولتحقيق هذا التحسين، تم استخدام تقنية استدلالية جديدة تسمى خوارزمية الطائر الطنان الاصطناعي (AHA). تم تطبيق النموذج المعدل للتنبؤ بمعدلات تآكل ومعامل احتكاك المركبات النانوية Cu - Al 2 O 3 التي تم تطويرها في هذه الدراسة. تم إجراء طلاء عديم المسرى الكهربائي لجسيمات Al 2 O 3 النانوية بالفضة (Ag) لتحسين قابلية الترطيب متبوعًا بطحن الكرة والضغط لتوحيد المواد المركبة. تم تمييز الخصائص الهيكلية الدقيقة والميكانيكية والتآكل للمواد المركبة المنتجة بمحتوى Al 2 O 3 مختلف. تم تقييم معدلات التآكل ومعامل الاحتكاك باستخدام اختبار التآكل المنزلق عند أحمال وسرعات مختلفة. أظهر النموذج المطور باستخدام خوارزمية AHA قابلية ممتازة للتنبؤ بمعدل التآكل ومعامل الاحتكاك للمركبات النانوية Cu - Al 2 O 3 مع محتوى تعزيز يصل إلى 10 ٪.
Meta-heuristic, Optimization, Composite material, Artificial neural network, Metal Matrix Composites: Science and Applications, Artificial intelligence, FOS: Mechanical engineering, Artificial Hummingbird Algorithm (AHA), Engineering, Dendritic Neural, FOS: Electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Electrodeposition and Composite Coatings, Nanocomposite, Mechanical Engineering, Cu-Al2O3 nanocomposites, Engineering (General). Civil engineering (General), Electrical Discharge Machining Processes, Computer science, Materials science, Physical Sciences, Metallurgy, TA1-2040, Copper
Meta-heuristic, Optimization, Composite material, Artificial neural network, Metal Matrix Composites: Science and Applications, Artificial intelligence, FOS: Mechanical engineering, Artificial Hummingbird Algorithm (AHA), Engineering, Dendritic Neural, FOS: Electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Electrodeposition and Composite Coatings, Nanocomposite, Mechanical Engineering, Cu-Al2O3 nanocomposites, Engineering (General). Civil engineering (General), Electrical Discharge Machining Processes, Computer science, Materials science, Physical Sciences, Metallurgy, TA1-2040, Copper
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
