
doi: 10.1155/2021/6804723
Solving triangular systems is the building block for preconditioned GMRES algorithm. Inexact preconditioning becomes attractive because of the feature of high parallelism on accelerators. In this paper, we propose and implement an iterative, inexact block triangular solve on multi-GPUs based on PETSc’s framework. In addition, by developing a distributed block sparse matrix-vector multiplication procedure and investigating the optimized vector operations, we form the multi-GPU-enabled preconditioned GMRES with the block Jacobi preconditioner. In the implementation, the GPU-Direct technique is employed to avoid host-device memory copies. The preconditioning step used by PETSc’s structure and the cuSPARSE library are also investigated for performance comparisons. The experiments show that the developed GMRES with inexact preconditioning on 8 GPUs can achieve up to 4.4x speedup over the CPU-only implementation with exact preconditioning using 8 MPI processes.
Iterative numerical methods for linear systems, Computational methods for sparse matrices, Numerical algorithms for specific classes of architectures
Iterative numerical methods for linear systems, Computational methods for sparse matrices, Numerical algorithms for specific classes of architectures
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
