Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A mixed integer nonlinear programming approach for integrated bio-refinery and petroleum refinery topology optimization

Authors: Mahmoud, Ahmed; Sunarso, Jaka;

A mixed integer nonlinear programming approach for integrated bio-refinery and petroleum refinery topology optimization

Abstract

Abstract The conversion of biomass into gasoline and diesel in bio-refinery process is an attractive process given its carbon neutral and sustainable nature. The economics of bio-refinery can be improved via integration with petroleum refinery, whereby bio-refinery intermediates can be processed into gasoline and diesel in the well-established petroleum refinery processing units, i. e., hydrocracking (HC) and fluidized catalytic cracking (FCC) units. However, the integration of the new bio-refinery into the existing petroleum refinery may not give the optimum solution given the capacities constraints of the existing petroleum refinery upgrading units such as FCC and HC units. Thus, this work proposed a superstructure comprising new bio-refinery and new petroleum refinery block diagrams. The superstructure was formulated into mixed integer nonlinear programming (MINLP) model. The model was coded into general algebraic modeling system (GAMS) platform and solved using global optimum solver, LINDOGLOBAL. The model application was demonstrated using representative case study. The model results showed that the optimum integrated bio-refinery and petroleum refinery topology favors the upgrading of bio-refinery intermediates using petroleum refinery HC unit under one-through operation mode with a marginal increase in the profit of about 0.39% compared to the second optimum case of upgrading bio-refinery intermediate using petroleum refinery FCC unit under gasoline operation mode. Thus, the decision in selecting the most suitable topology can be made based on the market demand for gasoline and diesel as the topology that uses FCC maximizes gasoline production and the topology that uses HC maximizes diesel production.

Country
Australia
Related Organizations
Keywords

650

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!