
doi: 10.1007/bf02843162
Let \(P\) be an \(n\)-dimensional regular simplex in \({\mathbb{R}}^{n}\) centered at the origin. The \(k\)-skeleton of \(P\) for \(k=1,...,n\) is denoted by \(P\left( k\right) \). The author proved in his earlier publication [Discrete Comput. Geom. 17, No. 2, 163-189 (1997; Zbl 0872.39014)] that the set \({\mathcal H}_{P\left( k\right) }\) of continuous functions in \({\mathbb{R}}^{n}\) satisfying the mean value property with respect to \(P\left( k\right) \) is a finite-dimensional linear subspace of harmonic polynomials. In this paper the author determines the function space \({\mathcal H}_{P\left( k\right) }\) explicitly using combinatorial and group theoretic arguments. The cases \(k=0,n-1,n\) have earlier been considered by \textit{L. Flatto} [Am. J. Math. 85, 248-270 (1963; Zbl 0145.37103)].
Functional equations for real functions, mean value property, Polynomials, rational functions in real analysis, harmonic polynomials, simplex, Harmonic, subharmonic, superharmonic functions in higher dimensions
Functional equations for real functions, mean value property, Polynomials, rational functions in real analysis, harmonic polynomials, simplex, Harmonic, subharmonic, superharmonic functions in higher dimensions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
