Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.60692/x3...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/k0...
Other literature type . 2020
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Two-Loop Hybrid Method for Optimal Placement and Scheduling of Switched Capacitors in Distribution Networks

طريقة هجينة ذات حلقتين للتنسيب الأمثل وجدولة المكثفات المحولة في شبكات التوزيع
Authors: Amirreza Jafari; Hamed Ganjeh Ganjehlou; Tohid Khalili; Behnam Mohammadi-Ivatloo; Ali Bidram; Pierluigi Siano;

A Two-Loop Hybrid Method for Optimal Placement and Scheduling of Switched Capacitors in Distribution Networks

Abstract

Cet article présente une méthode pour trouver la taille et l'emplacement optimaux des condensateurs commutés à l'aide d'un algorithme d'optimisation hybride. La fonction objective comprend la puissance active et réactive des centrales électriques, les coûts de capital et de maintenance des batteries de condensateurs et le coût des pertes de puissance active et réactive dans les lignes de distribution et les transformateurs. L'impact du modèle de charge sur le dimensionnement et le placement optimaux des condensateurs commutés est étudié en utilisant trois scénarios différents : dans le premier scénario, toutes les charges sont dépendantes de la tension ; dans le deuxième scénario, seule une partie des charges est dépendante de la tension ; dans le troisième scénario, toutes les charges sont indépendantes de la tension. L'algorithme hybride proposé intègre une couche d'optimisation externe et deux couches d'optimisation internes. La couche externe est exécutée par un algorithme génétique (GA), tandis que la couche interne est effectuée par un GA, un algorithme de marché d'échange (EMA) ou une optimisation d'essaim de particules (PSO). Les performances des schémas hybrides GA-GA, GA-EMA et GA-PSO sont comparées sur un système de test IEEE 33 bus. De plus, les réseaux IEEE 33-bus et 69-bus sont utilisés pour vérifier l'efficacité du schéma hybride proposé par rapport à l'algorithme de recherche gravitationnelle (GSA), une combinaison de PSO et GSA (PSOGSA), l'algorithme de recherche de coucou (CSA), l'optimisation basée sur l'apprentissage (TLBO) et l'algorithme de pollinisation des fleurs (FPA). Les résultats mettent en évidence l'avantage du schéma d'optimisation hybride proposé par rapport aux autres algorithmes d'optimisation.

Este documento presenta un método para encontrar el tamaño y el lugar óptimos de los condensadores conmutados utilizando un algoritmo de optimización híbrido. La función objetivo incluye la potencia activa y reactiva de las centrales eléctricas, los costes de capital y mantenimiento de los bancos de condensadores, y el coste de las pérdidas de potencia activa y reactiva en las líneas de distribución y transformadores. El impacto del modelo de carga en el tamaño y la colocación óptimos de los condensadores conmutados se estudia utilizando tres escenarios diferentes: en el primer escenario, todas las cargas son dependientes de la tensión; en el segundo escenario, solo una parte de las cargas son dependientes de la tensión; en el tercer escenario, todas las cargas son independientes de la tensión. El algoritmo híbrido propuesto incorpora una capa de optimización externa y dos internas. La capa externa es ejecutada por un algoritmo genético (GA), mientras que la capa interna es realizada por un GA, un algoritmo de mercado de intercambio (EMA) o una optimización de enjambre de partículas (PSO). El rendimiento de los esquemas híbridos GA-GA, GA-EMA y GA-PSO se compara en un sistema de prueba IEEE 33-bus. Además, las redes IEEE 33-bus y 69-bus se utilizan para verificar la efectividad del esquema híbrido propuesto frente al algoritmo de búsqueda gravitacional (GSA), una combinación de PSO y GSA (PSOGSA), algoritmo de búsqueda de cuco (CSA), optimización basada en el aprendizaje de la enseñanza (TLBO) y algoritmo de polinización de flores (FPA). Los resultados destacan la ventaja del esquema de optimización híbrido propuesto sobre los otros algoritmos de optimización.

This paper presents a method to find the optimal size and place of the switched capacitors using a hybrid optimization algorithm. The objective function includes the active and reactive power of power plants, the capital and maintenance costs of capacitor banks, and the cost of active and reactive power losses in distribution lines and transformers. The impact of the load model on the optimal sizing and placement of switched capacitors is studied using three different scenarios: In the first scenario, all loads are voltage-dependent; in the second scenario, only a portion of loads are voltage-dependent; in the third scenario, all loads are voltage-independent. The proposed hybrid algorithm incorporates an outer and two inner optimization layers. The outer layer is executed by a genetic algorithm (GA), while the inner layer is performed by a GA, an exchange market algorithm (EMA), or a particle swarm optimization (PSO). The performance of GA-GA, GA-EMA, and GA-PSO hybrid schemes are compared on an IEEE 33-bus test system. Moreover, IEEE 33-bus and 69-bus networks are used to verify the effectiveness of proposed hybrid scheme against the gravitational search algorithm (GSA), a combination of PSO and GSA (PSOGSA), cuckoo search algorithm (CSA), teaching learning-based optimization (TLBO), and flower pollination algorithm (FPA). The results highlight the advantage of the proposed hybrid optimization scheme over the other optimization algorithms.

تقدم هذه الورقة طريقة للعثور على الحجم والمكان الأمثل للمكثفات المحولة باستخدام خوارزمية تحسين هجينة. وتشمل وظيفة الهدف الطاقة النشطة والتفاعلية لمحطات الطاقة، وتكاليف رأس المال والصيانة لبنوك المكثفات، وتكلفة فقدان الطاقة النشطة والتفاعلية في خطوط التوزيع والمحولات. تتم دراسة تأثير نموذج الحمل على الحجم الأمثل ووضع المكثفات المحولة باستخدام ثلاثة سيناريوهات مختلفة: في السيناريو الأول، تعتمد جميع الأحمال على الجهد ؛ في السيناريو الثاني، يعتمد جزء فقط من الأحمال على الجهد ؛ في السيناريو الثالث، تعتمد جميع الأحمال على الجهد. تتضمن الخوارزمية الهجينة المقترحة طبقة تحسين خارجية وطبقتين داخليتين. يتم تنفيذ الطبقة الخارجية بواسطة خوارزمية وراثية (GA)، بينما يتم تنفيذ الطبقة الداخلية بواسطة خوارزمية GA أو خوارزمية سوق الصرف (EMA) أو تحسين سرب الجسيمات (PSO). تتم مقارنة أداء المخططات الهجينة GA - GA و GA - EMA و GA - PSO على نظام اختبار IEEE 33 - bus. علاوة على ذلك، يتم استخدام شبكات IEEE 33 - bus و 69 - bus للتحقق من فعالية المخطط الهجين المقترح مقابل خوارزمية البحث عن الجاذبية (GSA)، وهي مزيج من PSO و GSA (PSOGSA)، وخوارزمية البحث عن الوقواق (CSA)، وتعليم التحسين القائم على التعلم (TLBO)، وخوارزمية تلقيح الزهور (FPA). تسلط النتائج الضوء على ميزة مخطط التحسين المختلط المقترح على خوارزميات التحسين الأخرى.

Keywords

Optimization, Artificial intelligence, Exchange market algorithm (EMA), General Computer Science, AC power, Control (management), Constraint satisfaction, Visual arts, Engineering, genetic algorithm (GA), radial distribution system (RDS), switched capacitors, FOS: Electrical engineering, electronic engineering, information engineering, Control theory (sociology), FOS: Mathematics, Hybrid algorithm (constraint satisfaction), General Materials Science, Electrical and Electronic Engineering, Sizing, particle swarm optimization (PSO), Probabilistic logic, Optimal Power Flow, Constraint logic programming, Particle swarm optimization, Mathematical optimization, General Engineering, Cuckoo search, Electricity Market Operation and Optimization, Voltage, Capacitor, Computer science, TK1-9971, Integration of Distributed Generation in Power Systems, Algorithm, Genetic algorithm, Exchange market algorithm (EMA); genetic algorithm (GA); particle swarm optimization (PSO); radial distribution system (RDS); switched capacitors, Control and Systems Engineering, Electrical engineering, Physical Sciences, Control and Synchronization in Microgrid Systems, Electrical engineering. Electronics. Nuclear engineering, Mathematics, Art

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
  • 1
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
64
Top 1%
Top 10%
Top 1%
1
Green
gold