
handle: 11573/1736235
In this paper, we study the embedded feature selection problem in linear Support Vector Machines (SVMs), in which a cardinality constraint is employed, leading to an interpretable classification model. The problem is NP-hard due to the presence of the cardinality constraint, even though the original linear SVM amounts to a problem solvable in polynomial time. To handle the hard problem, we first introduce two mixed-integer formulations for which novel semidefinite relaxations are proposed. Exploiting the sparsity pattern of the relaxations, we decompose the problems and obtain equivalent relaxations in a much smaller cone, making the conic approaches scalable. To make the best usage of the decomposed relaxations, we propose heuristics using the information of its optimal solution. Moreover, an exact procedure is proposed by solving a sequence of mixed-integer decomposed semidefinite optimization problems. Numerical results on classical benchmarking datasets are reported, showing the efficiency and effectiveness of our approach.
101015 Operations Research, 102019 Machine Learning, Interpretable Machine Learning, Support Vector Machines, Semidefinite Programming, Mixed Integer Quadratic Programming, 101015 Operations research, 102019 Machine learning
101015 Operations Research, 102019 Machine Learning, Interpretable Machine Learning, Support Vector Machines, Semidefinite Programming, Mixed Integer Quadratic Programming, 101015 Operations research, 102019 Machine learning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
