Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/e8...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/4r...
Other literature type . 2022
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Enhancement of mmWave MIMO Systems Using Machine Learning

تحسين أداء أنظمة MIMO ذات الموجة المليمترية باستخدام التعلم الآلي
Authors: Fawad Ahmad 0001; Waqas Bin Abbas; Salman Khalid 0002; Farhan Khalid; Muhammad Ibrar Khan; Fahad Aldosari;

Performance Enhancement of mmWave MIMO Systems Using Machine Learning

Abstract

Pour les futures communications sans fil, l'onde millimétrique (mmWave) couplée à l'énorme entrée multiple sortie multiple (MIMO) sont des technologies clés pour surmonter les énormes exigences de débit de données. Bien que le MIMO massif améliore considérablement l'efficacité spectrale (SE) du système, l'utilisation de grands réseaux d'antennes augmente non seulement la complexité de calcul, mais peut également diminuer l'efficacité énergétique. En nous concentrant sur l'amélioration de l'efficacité énergétique, nous proposons une solution à faible complexité pour la sélection d'antennes d'émission conjointes et la conception de précodeurs hybrides pour les systèmes de communication MIMO massifs à ondes millimétriques multi-utilisateurs. En particulier, compte tenu d'une architecture hybride partiellement connectée, des algorithmes d'optimisation d'essaim de particules binaires et de réseau neuronal profond (DNN) sont utilisés pour la sélection d'antenne d'émission et la conception de précodeur analogique, respectivement. Les résultats montrent que la solution proposée est très proche, en termes d'efficacité spectrale, de la sélection d'antenne optimale basée sur la recherche exhaustive et de la conception de précodeur basée sur la décomposition de valeurs singulières avec une complexité de calcul plus faible. Il est également démontré que la solution proposée améliore également l'efficacité énergétique du système. Enfin, la solution proposée est peu sensible aux imperfections des canaux.

Para la futura comunicación inalámbrica, la onda milimétrica (mmWave) junto con la entrada múltiple y salida múltiple masiva (mimo) son tecnologías clave para superar los enormes requisitos de velocidad de datos. Aunque el mimo masivo mejora en gran medida la eficiencia espectral (SE) del sistema, el uso de grandes conjuntos de antenas no solo aumenta la complejidad computacional, sino que también puede disminuir la eficiencia energética. Centrándonos en la mejora de la eficiencia energética, proponemos una solución de baja complejidad para la selección conjunta de antenas de transmisión y el diseño de precodificadores híbridos para sistemas de comunicación mimo masivo mmWave multiusuario. En particular, considerando una arquitectura híbrida parcialmente conectada, se emplean algoritmos de optimización de enjambre de partículas binarias y de red neuronal profunda (DNN) para la selección de antena de transmisión y el diseño de precodificador analógico, respectivamente. Los resultados muestran que la solución propuesta funciona muy cerca, en términos de eficiencia espectral, de la selección de antena basada en búsqueda exhaustiva óptima y el diseño de precodificador basado en descomposición de valor singular con menor complejidad computacional. También se demuestra que la solución propuesta también mejora la eficiencia energética del sistema. Finalmente, la solución propuesta no es muy sensible a las imperfecciones del canal.

For future wireless communication, millimeter wave (mmWave) coupled with the massive multiple-input multiple-output (MIMO) are key technologies to overcome the huge data rate requirements. Although massive MIMO greatly improves the spectral efficiency (SE) of the system, the use of large antenna arrays not only increases the computational complexity it may also decrease the energy efficiency. Focusing on improvement in energy efficiency, we propose a low-complexity solution for joint transmit antenna selection and hybrid precoder design for multi-user mmWave Massive MIMO communication systems. Particularly, considering a partially connected hybrid architecture, binary particle swarm optimization and deep neural network (DNN) algorithms are employed for transmit antenna selection and analog precoder design, respectively. Results show that the proposed solution performs very close, in terms of spectral efficiency, to the optimal exhaustive search based antenna selection and singular value decomposition based precoder design with lower computational complexity. It is also shown that the proposed solution also improves the energy efficiency of the system. Finally, the proposed solution is not very sensitive to channel imperfections.

بالنسبة للاتصالات اللاسلكية المستقبلية، تعد الموجة المليمترية (mmWave) إلى جانب المدخلات المتعددة متعددة المدخلات (MIMO) من التقنيات الرئيسية للتغلب على متطلبات معدل البيانات الضخمة. على الرغم من أن MIMO الضخم يحسن بشكل كبير الكفاءة الطيفية (SE) للنظام، إلا أن استخدام مصفوفات الهوائيات الكبيرة لا يزيد من التعقيد الحسابي فحسب، بل قد يقلل أيضًا من كفاءة الطاقة. مع التركيز على تحسين كفاءة الطاقة، نقترح حلاً منخفض التعقيد لاختيار هوائي الإرسال المشترك وتصميم الترميز المسبق الهجين لأنظمة اتصالات MIMO الضخمة متعددة المستخدمين mmWave. على وجه الخصوص، بالنظر إلى البنية الهجينة المتصلة جزئيًا، يتم استخدام خوارزميات تحسين سرب الجسيمات الثنائي والشبكة العصبية العميقة (DNN) لاختيار هوائي الإرسال وتصميم المشفر التمهيدي التناظري، على التوالي. تظهر النتائج أن الحل المقترح يؤدي أداءً قريبًا جدًا، من حيث الكفاءة الطيفية، إلى اختيار الهوائي الأمثل القائم على البحث الشامل وتصميم وحدة الترميز المسبق القائم على تحليل القيمة المفردة مع تعقيد حسابي أقل. كما تبين أن الحل المقترح يحسن أيضًا من كفاءة الطاقة للنظام. أخيرًا، الحل المقترح ليس حساسًا جدًا لعيوب القناة.

Keywords

Dual-Band Design, Antenna (radio), hybrid precoding, Antenna array, Multiuser MIMO, antenna selection, Engineering, MIMO Systems, FOS: Electrical engineering, electronic engineering, information engineering, Millimeter-Wave Applications, Efficient energy use, Spectral efficiency, Electrical and Electronic Engineering, energy efficiency, Electronic engineering, Particle swarm optimization, deep learning, Precoding, Next Generation 5G Wireless Networks, Spatial multiplexing, Multi-user MIMO, Computer science, TK1-9971, Computational complexity theory, Algorithm, MIMO, Millimeter Wave Communications for 5G and Beyond, Channel (broadcasting), Electrical engineering, Physical Sciences, Telecommunications, Electrical engineering. Electronics. Nuclear engineering, Microwave Engineering and Waveguides, Massive MIMO, 3G MIMO

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold