
Evolutionary algorithms have been successfully applied to design fuzzy rule-based classifiers. They are used for attribute selection, fuzzy set selection, rule selection, membership function tuning, and so on. Genetics-based machine learning (GBML) is one of the promising evolutionary algorithms for classifier design. It can find an appropriate combination of antecedent sets for each rule in a classifier. Although GBML has high search ability, it needs long computation time especially for large data sets. In this paper, we apply a parallel distributed implementation to our fuzzy genetics-based machine learning. In our method, we divide not only a population but also a training data set into subgroups. These subgroups are assigned to CPU cores. Through computational experiments on large data sets, we show the effectiveness of the proposed parallel distributed implementation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
