Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterizing External Resistive, Inductive and Capacitive Loads for Micro-Switches

Authors: Toler, Benjamin; Coutu, Ronald A., Jr.;

Characterizing External Resistive, Inductive and Capacitive Loads for Micro-Switches

Abstract

Microelectromechanical systems (MEMS) switches offer much lower power consumption, much better isolation, and lower insertion loss compared to conventional field-effect transistors and PIN diodes however, the MEMS switch reliability is a major obstacle for large-volume commercial applications [1]. To enhance reliability, circuit designers need simple and accurate behavioral models of embedded switches in CAD tools to enable system-level simulations [2]. Where Macro-switch researchers assess electric contact performance based on the type of load that is being switched, in MEMS literature, micro-switch performance and reliability is characterized by testing the devices under “hot-switched” or “cold-switched” load conditions; simple models are developed from the “hot” and “cold” characterizations. By applying macro-switch performance characterization techniques, i.e. examining reliability based on the type of load that is being switched, clear characterizations of “hot” switching and “cold” switching external resistive, capacitive, and inductive loads are produced. External resistive loads were found to act as current limiters and should be suitable under certain criteria for reducing current density through the contact area and thus limiting device failure to mechanical failure modes. Alternatively, external capacitive loads increased current density under “hot” switching conditions at the moment the micro-switch closes; which increases the risk for material transfer and device failure. Under DC conditions, the inductive loads had little effect in either “hot” or “cold” switching environments.

Related Organizations
Keywords

Capacitive loads, Engineering, Resistive loads, Micro-switch reliability, 621, Contact resistance, Computer Engineering, Electrical and Computer Engineering, Inductive loads

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!