
doi: 10.1002/fld.5146
AbstractWe present a strong form meshless solver for numerical solution of the nonstationary, incompressible, viscous Navier–Stokes equations in two (2D) and three dimensions (3D). We solve the flow equations in their stream function‐vorticity (in 2D) and vector potential‐vorticity (in 3D) formulation, by extending to 3D flows the boundary condition‐enforced immersed boundary method, originally introduced in the literature for 2D problems. We use a Cartesian grid, uniform or locally refined, to discretize the spatial domain. We apply an explicit time integration scheme to update the transient vorticity equations, and we solve the Poisson type equation for the stream function or vector potential field using the meshless point collocation method. Spatial derivatives of the unknown field functions are computed using the discretization‐corrected particle strength exchange method. We verify the accuracy of the proposed numerical scheme through commonly used benchmark and example problems. Excellent agreement with the data from the literature was achieved. The proposed method was shown to be very efficient, having relatively large critical time steps.
explicit time integration scheme, immersed boundary method, transient incompressible Navier-Stokes, meshless point collocation method, discretization-corrected particle strength exchange, Fluid mechanics, vector potential, Numerical analysis
explicit time integration scheme, immersed boundary method, transient incompressible Navier-Stokes, meshless point collocation method, discretization-corrected particle strength exchange, Fluid mechanics, vector potential, Numerical analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
