Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pure and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Pure and Applied Algebra
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Pure and Applied Algebra
Article . 1995
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pure and Applied Algebra
Article . 1995 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1995
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Categorial generalization of algebraic recursion theory

Authors: Zashev, J.;

Categorial generalization of algebraic recursion theory

Abstract

A categorical generalization of a point-free presentation of recursion theory, called ``algebraic recursion theory'', is presented. Algebraic recursion theory studies least fixpoints (least solutions of systems of inequalities) in partially ordered universal algebras (poalgebras) with operations, monotone in each argument. The categorical generalization of this approach uses instead of a poalgebra a category \(C\) with a set of multi-endofunctors, and an appropriate generalization of inequalities; least fixpoints are taken in the sense of \textit{J. Lambek} [``A fixpoint theorem for complete categories'', Math. Z. 103, 151-161 (1968; Zbl 0149.26105)]. The problem to be solved is formulated in the following way: given such \(C\), find a simple set \(B\) of inductively definable multi-endofunctors, such that for every \(F:C^{n+m}\to C^m\) (a) the least fixpoint of \(F\) exists and (b) is explicitly expressible by means of basic multi-endofunctors and these form \(B\). This problem is solved for so called DM-categories, suggested by the author. They are categorical generalizations of ``operation spaces'' [\textit{L. L. Ivanov}, Algebraic recursion theory (1986; Zbl 0613.03018)]. Their structure is a combination of monoidal and Cartesian structure. There are three main examples; one is defined using a category of all categories with certain properties (initial object, direct limits of \(\omega\)-sequences, etc.); two others are the category of abstract programs and correctness proofs and the category of logical programs and correctness proofs.

Related Organizations
Keywords

Logic in computer science, Algebra and Number Theory, least fixpoints, multi-endofunctors, operation spaces, category of logical programs and correctness proofs, Theories (e.g., algebraic theories), structure, and semantics, fixpoints in categories, category of abstract programs and correctness proofs, point-free recursion theory, Abstract and axiomatic computability and recursion theory, Categorical logic, topoi

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Top 10%
Average
hybrid