
doi: 10.1137/0508038
Using an approach which extends the well-known classical integral equation methods, we reduce a mixed boundary value problem for harmonic functions to a system consisting of two integral equations of the second kind. Existence is proved by the Fredholm alternative for compact operators. The integral equations can be solved apptgximately by successive iterations. Further investigations are made on the spectrum of the boundary integral operator.
Boundary value and inverse problems for harmonic functions in two dimensions, Boundary value problems for second-order elliptic equations, General existence and uniqueness theorems (PDE)
Boundary value and inverse problems for harmonic functions in two dimensions, Boundary value problems for second-order elliptic equations, General existence and uniqueness theorems (PDE)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
