Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Електротехніка і Еле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Електротехніка і Електромеханіка
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermomechanical loads of powerful turbogenerator stator winding insulation in the presence of water cooling defects

Authors: K. A. Kuchynskyi; O. H. Kensytsky;

Thermomechanical loads of powerful turbogenerator stator winding insulation in the presence of water cooling defects

Abstract

Introduction. An analysis of incidents linked to power units’ emergency disconnecting from network as a result of turbogenerators’ malfunction on the NPP of Ukraine is conducted. It is identified, that the reason of the majority of incidents is an insufficient reliability of the stator winding’s direct cooling system. Problem. The most problematic point in winding for today is the frontal parts, where, while cooling is reduced, there are not only thermal, but also thermomechanical loadings on an insulation appearing. The level of these loading depends on structural design of frontal parts and a character of violation of coolant agent circulation in a bar. In some cases they can exceed limit values. The spread and the quality of research on this issue for today are insufficient. Goal. The aim of the completed research is to determine the thermomechanical loading of insulation of stator winding bar in a powerful turbogenerator with a direct liquid cooling under condition when coolant circulation is malfunctioned. Methodology. A complex mathematical model of thermomechanical processes in an insulation of stator winding bar of a powerful turbogenerator is developed. It takes into account the real geometry of the winding bar, variable thermal loading of core elements in radial and axial directions, as well as ways of fixation of slot and frontal winding parts. Studies of thermomechanical processes in an insulation of stator winding bar of turbogenerator are conducted. Results. Values of mechanical displacement and stress for the different modes of malfunction are obtained. Areas of bar, where mechanical loading may exceed the boundaries of mechanical durability of material of insulation of stator winding are identified. With decline of coolant liquid consumption the radial displacement and stress in the winding insulation bar in the area, where the bar exits from the slot are increasing along with that the values of radial stress of insulation of the winding bar in places of frontal parts’ fixation exceed limit values. Practical significance. The offered mathematical models allow to realize calculation experiments and can be used in practice for development and validation of diagnostic systems, analysis, design and investigation of emergency situations during exploitation of turbogenerators on power stations of Ukraine.

Keywords

turbogenerator, stator winding, thermomechanical loading, турбогенератор, водяне охолодження, порушення циркуляції, термомеханічні навантаження, water cooling, Electrical engineering. Electronics. Nuclear engineering, violation of circulation, обмотка статора, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 6
    download downloads 7
  • 6
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
6
7
gold
Related to Research communities