Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Designs Codes and Cryptography
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Code-based signatures from new proofs of knowledge for the syndrome decoding problem

Authors: Loïc Bidoux; Philippe Gaborit; Mukul Kulkarni; Victor Mateu;

Code-based signatures from new proofs of knowledge for the syndrome decoding problem

Abstract

In this paper, we study code-based signatures constructed from Proof of Knowledge (PoK). This line of work can be traced back to Stern who introduces the first efficient PoK for the syndrome decoding problem in 1993. Afterward, different variations were proposed in order to reduce signature's size. In practice, obtaining a smaller signature size relies on the interaction of two main considerations: (i) the underlying protocol and its soundness error and (ii) the type of optimizations which are compatible with a given protocol. Over the years, different variations were proposed to improve the Stern scheme such as the Veron scheme (with public key a noisy codeword rather than a syndrome), the AGS scheme which is a 5-pass protocol with cheating probability asymptotically equal to 1/2 and more recently the FJR approach which permits to decrease the cheating probability to 1/N but induces a performance overhead. Overall the length of the signature depends on a trade-off between: the scheme in itself, the possible optimizations and the cost of the implementation. The recent approaches which increase the cost of the implementation opens the door to many different type of trade-offs. In this paper we propose three new schemes and different trade-offs, which are all interesting in themselves, since depending on potential future optimizations a scheme may eventually become more efficient than another. All the schemes we propose use a trusted helper: a first scheme permits to get a 1/2 cheating probability, a second scheme permits to decrease the cheating probability in 1/N but with a different approach than the recent FJR scheme and at last a third scheme propose a Veron-like adaptation of the FJR scheme in which the public key is a noisy codeword rather than a syndrome. We provide an extensive comparison table which lists various trade-offs between our schemes and previous ones.

Related Organizations
Keywords

FOS: Computer and information sciences, Combinatorial codes, code-based cryptography, Computer Science - Cryptography and Security, Decoding, Algebraic coding theory; cryptography (number-theoretic aspects), Authentication, digital signatures and secret sharing, proof of knowledge, Cryptography, Cryptography and Security (cs.CR), signature

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green