Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Wireless Communications
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
TOBB ETU GCRIS Database
Other literature type
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Static Target Detection and Power Allocation for Integrated Sensing and Communication in Cell-Free Massive MIMO

Authors: Zinat Behdad; Özlem Tuğfe Demir; Ki Won Sung; Emil Björnson; Cicek Cavdar;

Multi-Static Target Detection and Power Allocation for Integrated Sensing and Communication in Cell-Free Massive MIMO

Abstract

This paper studies an integrated sensing and communication (ISAC) system within a centralized cell-free massive MIMO (multiple-input multiple-output) network for target detection. ISAC transmit access points serve the user equipments in the downlink and optionally steer a beam toward the target in a multi-static sensing framework. A maximum a posteriori ratio test detector is developed for target detection in the presence of clutter, so-called target-free signals. Additionally, sensing spectral efficiency (SE) is introduced as a key metric, capturing the impact of resource utilization in ISAC. A power allocation algorithm is proposed to maximize the sensing signal-to-interference-plus-noise ratio while ensuring minimum communication requirements. Two ISAC configurations are studied: utilizing existing communication beams for sensing and using additional sensing beams. The proposed algorithm's efficiency is investigated in realistic and idealistic scenarios, corresponding to the presence and absence of the target-free channels, respectively. Despite performance degradation in the presence of target-free channels, the proposed algorithm outperforms the interference-unaware benchmark, leveraging clutter statistics. Comparisons with a fully communication-centric algorithm reveal superior performance in both cluttered and clutter-free environments. The incorporation of an extra sensing beam enhances detection performance for lower radar cross-section variances. Moreover, the results demonstrate the effectiveness of the integrated operation of sensing and communication compared to an orthogonal resource-sharing approach.

16 pages, 7 figures

Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, cell-free massive MIMO, Computer Science - Information Theory, Clutter (information theory), Integrated sensing and communication, MIMO systems, multi-static sensing, FOS: Electrical engineering, electronic engineering, information engineering, Multistatics, Electrical Engineering and Systems Science - Signal Processing, Multiple inputs, Multiple outputs, Signal to noise ratio, Integrated sensing, Information Theory (cs.IT), Cell-free, Radar cross section, power allocation, Cell-free massive multiple-input multiple-output, Benchmarking, Energy efficiency, Integrated sensing and communication (ISAC), Power allocations, C-RAN, Spectrum efficiency, Multi-static sensing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Top 10%
Top 10%
Green
hybrid
Funded by
Related to Research communities