Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Article . 2022
Data sources: PolyPublie
Journal of Applied Physics
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Continuously tunable middle-IR bandpass filters based on gradient metal-hole arrays for multispectral sensing and thermography

Authors: N. V. Chernomyrdin; D. V. Lavrukhin; V. E. Ulitko; R. R. Galiev; A. A. Gavdush; V. B. Anzin; A. N. Perov; +6 Authors

Continuously tunable middle-IR bandpass filters based on gradient metal-hole arrays for multispectral sensing and thermography

Abstract

Continuously tunable middle-infrared bandpass filters have been developed based on gradient metal-hole arrays with two distinct geometries. The rotation filter relies on an array of metal holes with gradually changing periods and hole sizes in the azimuthal direction, while the translation filter exploits a metal-hole array with a linear gradient. The filters are fabricated in a Ti film on a ZnSe substrate using electron-beam nanolithography. They are characterized experimentally using Fourier-transform infrared spectroscopy, and the observed results are compared with numerical predictions of the finite element method. The developed filters offer wide spectral tunability when operating with a focused beam. Particularly, the central wavelength of the transmission band is tunable in the λc∈(9,15)μm range, for the rotation filter, and in the λc∈(8,13)μm range for the translation one, as a linear function of the filter angular or linear displacement. The filters feature relatively broad bandwidths of Δλ≃0.2λc, while their spectral contrast and energy efficiency depend on the gradient type. The filter spectral response function shape and the extent of its spectra tunability can be further optimized by judicious design of the hole geometry and the metal-hole array gradient, respectively. The developed filters hold strong potential in the infrared multispectral sensing and imaging, thanks to their conceptual simplicity. Considering the linearity of Maxwell’s equations and availability of appropriate technologies for the fabrication of gradient arrays of sub-wavelength metal holes, the developed concept can be translated to other spectral ranges.

Countries
Canada, Russian Federation
Keywords

субволновые металлические решетки, полосовые фильтры, средний инфракрасный диапазон

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green