
Uncertainty analysis of human exposure to radio waves is studied with a spectral approach of stochastic collocation methods. This approach allows determining in an efficient way the statistical moments of the output variable, the specific absorption rate, with respect to uncertain input parameters. Polynomial chaos expansions are used for the random output, and the spectral coefficients are determined by projection or regression. These techniques are used with an electromagnetic solver based on a finite difference time domain scheme. The convergence of the statistical moments is analyzed for two case studies. Global sensitivity is also analyzed for the uncertain position of a cellular phone in the close vicinity of a human head model.
Sensitivity, Specific absorption rate (SAR), FDTD, [SPI.ELEC] Engineering Sciences [physics]/Electromagnetism, Uncertainty, Stochastic collocation methods
Sensitivity, Specific absorption rate (SAR), FDTD, [SPI.ELEC] Engineering Sciences [physics]/Electromagnetism, Uncertainty, Stochastic collocation methods
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
