Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Matr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2017
Data sources: zbMATH Open
SIAM Journal on Matrix Analysis and Applications
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large-Scale Computation of $\mathcal{L}_\infty$-Norms by a Greedy Subspace Method

Large-scale computation of \(\mathcal{L}_\infty\)-norms by a greedy subspace method
Authors: Nicat Aliyev; Peter Benner; Emre Mengi; Paul Schwerdtner; Matthias Voigt;

Large-Scale Computation of $\mathcal{L}_\infty$-Norms by a Greedy Subspace Method

Abstract

We are concerned with the computation of the ${\mathcal L}_\infty$-norm for an ${\mathcal L}_\infty$-function of the form $H(s) = C(s) D(s)^{-1} B(s)$, where the middle factor is the inverse of a meromorphic matrix-valued function, and $C(s),\, B(s)$ are meromorphic functions mapping to short-and-fat and tall-and-skinny matrices, respectively. For instance, transfer functions of descriptor systems and delay systems fall into this family. We focus on the case where the middle factor is large-scale. We propose a subspace projection method to obtain approximations of the function $H$ where the middle factor is of much smaller dimension. The ${\mathcal L}_\infty$-norms are computed for the resulting reduced functions, then the subspaces are refined by means of the optimal points on the imaginary axis where the ${\mathcal L}_\infty$-norm of the reduced function is attained. The subspace method is designed so that certain Hermite interpolation properties hold between the largest singular values of the original and reduced functions. This leads to a locally superlinearly convergent algorithm with respect to the subspace dimension, which we prove and illustrate on various numerical examples.

23 pages, 3 figures

Keywords

singular values, 34K17, 65D05, 65F15, 90C06, 90C26, 93D03, meromorphic matrix-valued function, reduced basis, greedy search, General theory of numerical methods in complex analysis (potential theory, etc.), Numerical interpolation, FOS: Mathematics, Norms of matrices, numerical range, applications of functional analysis to matrix theory, Mathematics - Numerical Analysis, descriptor systems, delay systems, \(\mathcal{L}_\infty\)-norm, Numerical computation of matrix exponential and similar matrix functions, algorithm, Other matrix algorithms, Numerical Analysis (math.NA), numerical example, model order reduction, large scale, subspace projection method, Hermite interpolation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Green
bronze