
Dans cet article, une commande de mode coulissant déclenchée par un événement avec hystérésis est proposée pour le suivi de mouvement de l'actionneur piézoélectrique (PEA) en présence d'incertitudes, de perturbations et de caractéristiques d'hystérésis de non-linéarité. Tout d'abord, le modèle dynamique avec les caractéristiques d'hystérésis de l'actionneur piézoélectrique (PEA) est décrit par le modèle de Bouc-Wen. Deuxièmement, la conception du contrôle de mode glissant déclenché par un événement (ETSMC) avec hystérésis pour le système PEA est discutée et prouve la stabilité à l'aide de la loi de Lyapunov. Enfin, l'actionneur piézoélectrique PZS001 de THORLABS est utilisé pour valider le contrôleur proposé. Les résultats de la simulation montrent l'efficacité de l'approche ETSMC.
En este documento, se propone un control de modo deslizante desencadenado por eventos con histéresis para el seguimiento del movimiento del actuador piezoeléctrico (PEA) en presencia de incertidumbres, perturbaciones y características de histéresis de no linealidad. En primer lugar, el modelo dinámico con características de histéresis del actuador piezoeléctrico (PEA) se describe mediante el modelo de Bouc-Wen. En segundo lugar, se discute el diseño del control de modo deslizante activado por eventos (ETSMC) con histéresis para el sistema PEA y se demuestra la estabilidad utilizando la Ley de Lyapunov. Finalmente, se utiliza el actuador piezoeléctrico PZS001 de THORLABS para validar el controlador propuesto. Los resultados de la simulación muestran la efectividad del enfoque ETSMC.
In this paper, an event-triggered sliding mode control with hysteresis is proposed for motion tracking of the piezoelectric actuator (PEA) in the presence of uncertainties, disturbances, and nonlinearity hysteresis characteristics. First, the dynamic model with hysteresis characteristics of the piezoelectric actuator (PEA) is described by the Bouc-Wen model. Second, the design of event-triggered sliding mode control (ETSMC) with hysteresis for the PEA system is discussed and proves the stability using Lyapunov's Law. Finally, The piezoelectric actuator PZS001 of THORLABS are used to validate the proposed controller. Simulation results show the effectiveness of the ETSMC approach.
في هذه الورقة، يُقترح التحكم في الوضع الانزلاقي الذي يسببه الحدث مع التباطؤ لتتبع حركة المشغل الكهربائي الإجهادي (PEA) في وجود حالات عدم اليقين والاضطرابات وخصائص التباطؤ غير الخطية. أولاً، يتم وصف النموذج الديناميكي مع خصائص التخلف للمُشغل الكهربائي الإجهادي (PEA) بواسطة نموذج Bouc - Wen. ثانيًا، تتم مناقشة تصميم التحكم في الوضع الانزلاقي الذي يسببه الحدث (ETSMC) مع التباطؤ لنظام PEA ويثبت الاستقرار باستخدام قانون Lyapunov. أخيرًا، يتم استخدام المشغل الكهربائي الإجهادي PZS001 من THORLABS للتحقق من صحة وحدة التحكم المقترحة. تُظهر نتائج المحاكاة فعالية نهج ETSMC.
Iterative Learning Control in Engineering Practice, Artificial intelligence, Morphing Aircraft Technology, Sliding mode control, Robot, Motion Control, Piezoelectricity, Aerospace Engineering, FOS: Mechanical engineering, Control (management), Mode (computer interface), Quantum mechanics, Control Issues in Nanopositioning Systems, event-triggered sliding mode control, Engineering, Tracking (education), Control theory (sociology), Psychology, Event-triggered control, piezoelectric actuator (PEA), Motion control, Event (particle physics), Biology, Hysteresis, Physics, Pedagogy, Paleontology, Piezoelectric Actuators, Acoustics, Condensed matter physics, Computer science, Bouc-Wen model, TK1-9971, FOS: Psychology, Operating system, Control and Systems Engineering, Physical Sciences, Nonlinear system, Electrical engineering. Electronics. Nuclear engineering, sliding mode control (SMC), Hysteresis Modeling, Stage (stratigraphy)
Iterative Learning Control in Engineering Practice, Artificial intelligence, Morphing Aircraft Technology, Sliding mode control, Robot, Motion Control, Piezoelectricity, Aerospace Engineering, FOS: Mechanical engineering, Control (management), Mode (computer interface), Quantum mechanics, Control Issues in Nanopositioning Systems, event-triggered sliding mode control, Engineering, Tracking (education), Control theory (sociology), Psychology, Event-triggered control, piezoelectric actuator (PEA), Motion control, Event (particle physics), Biology, Hysteresis, Physics, Pedagogy, Paleontology, Piezoelectric Actuators, Acoustics, Condensed matter physics, Computer science, Bouc-Wen model, TK1-9971, FOS: Psychology, Operating system, Control and Systems Engineering, Physical Sciences, Nonlinear system, Electrical engineering. Electronics. Nuclear engineering, sliding mode control (SMC), Hysteresis Modeling, Stage (stratigraphy)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
