Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fluorophore-Labeled β-Lactamase as a Biosensor for β-Lactam Antibiotics: A Study of the Biosensing Process

Authors: Siu, FM; Ma, DL; Yiu, KF; Zhao, Y; So, PK; Chan, PH; Wong, KY; +6 Authors

Fluorophore-Labeled β-Lactamase as a Biosensor for β-Lactam Antibiotics: A Study of the Biosensing Process

Abstract

The fluorescein-labeled E166C mutant of the PenPC beta-lactamase (E166Cf) represents a successful model in the construction of "switch-on" fluorescent biosensors from nonallosteric proteins (Chan P.-H. et al.; J. Am Chem. Soc., 2004, 126, 4074). This paper focuses on the study of the biosensing mechanism by which the E166Cf biosensor changes its fluorescence upon beta-lactam binding and hydrolysis. Mass spectrometric and stopped-flow fluorescence studies of E166Cf with cefuroxime, penicillin G, and 6-aminopenicillanic acid reveal that the formation of enzyme-substrate complex enhances the fluorescence of E166Cf, and the subsequent regeneration of the free enzyme restores the weak fluorescence of E166Cf. Molecular modeling studies of E166Cf with penicillin G show that the fluorescein label is likely to share a common space with the beta-lactam and thiazolidine rings of the antibiotic in the active site. This spatial clash appears to cause the fluorescein label to move from the active site to the external aqueous environment upon substrate binding and hence experience higher water exposure. Steady-state fluorescence measurements indicate that the fluorescence of E166Cf can be enhanced by 6-aminopenicillanic acid, which consists of the beta-lactam and thiazolidine rings only. Thermal denaturation experiments of the wild-type enzyme, E166C, and E166Cf reveal that the E166C mutation is likely to increase the flexibility of the Omega-loop. This "modified" structural property might compensate for the possible steric effect of the fluorescein label on substrate binding.

Related Organizations
Keywords

Models, Molecular, Protein Denaturation, Biosensing Techniques - Methods, Penicillanic Acid, Biosensing Techniques, beta-Lactams, Mass Spectrometry, beta-Lactamases, Cefuroxime - Analysis - Chemistry, Penicillanic Acid - Analogs & Derivatives - Analysis - Chemistry, Models, Computer Simulation, Fluorescent Dyes, Cefuroxime, Spectrometry, Circular Dichroism, Spectrometry, Fluorescence - Methods, Molecular, Penicillin G, Beta-Lactamases - Chemistry - Metabolism, 540, Fluoresceins, Anti-Bacterial Agents, Kinetics, Fluorescence - Methods, Beta-Lactams - Analysis - Chemistry, Spectrometry, Fluorescence, Fluoresceins - Chemistry, Penicillin G - Analysis - Chemistry, Anti-Bacterial Agents - Analysis - Chemistry, Fluorescent Dyes - Chemistry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!