Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Infectionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Infection
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Infection
Article . 2024
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metagenomic next-generation sequencing as a diagnostic tool in the clinical routine of an infectious diseases department: a retrospective cohort study

Authors: Kalbitz, Sven; Ermisch, Jörg; Kellner, Nils; Nickel, Olaf; Borte, Stephan; Marx, Kathrin; Lübbert, Christoph;

Metagenomic next-generation sequencing as a diagnostic tool in the clinical routine of an infectious diseases department: a retrospective cohort study

Abstract

Abstract Background Metagenomic next-generation sequencing (mNGS) of circulating cell-free DNA from plasma is a hypothesis-independent broadband diagnostic method for identification of potential pathogens. So far, it has only been investigated in special risk populations (e.g. patients with neutropenic fever). Purpose To investigate the extent to which mNGS (DISQVER® platform) can be used in routine clinical practice. Methods We collected whole blood specimens for mNGS testing, blood cultures (BC), and pathogen-specific PCR diagnostics. Clinical data and pathogen diagnostics were retrospectively reviewed by an infectious disease expert panel regarding the adjustment of anti-infective therapy. Results In 55 selected patients (median age 53 years, 67% male) with heterogeneous diagnoses, a total of 66 different microorganisms and viruses were detected using mNGS (51% viruses, 38% bacteria, 8% fungi, 3% parasites). The overall positivity rate of mNGS was 53% (29/55). Fifty-two out of 66 (79%) potential pathogens detected by mNGS were found in patients with primary or secondary immunodeficiency. The concordance rates of BC and pathogen-specific PCR diagnostics with mNGS testing were 14% (4/28) and 36% (10/28), respectively (p < 0.001). An additional bacterial pathogen (Streptococcus agalactiae) could only be detected by BC. Therapeutic consequences regarding anti-infective therapy were drawn from 23 pathogens (35% of detections), with 18 of these detections occurring in patients with immunodeficiency. Conclusions We conclude that mNGS is a useful diagnostic tool, but should only be performed selectively in addition to routine diagnostics of infectious diseases. The limited number of patients and the retrospective study design do not allow any further conclusions.

Related Organizations
Keywords

Male, Adult, Aged, 80 and over, Adolescent [MeSH] ; Female [MeSH] ; High-Throughput Nucleotide Sequencing/methods [MeSH] ; mNGS ; HIV infection ; Aged, 80 and over [MeSH] ; Immunodeficiency ; Aged [MeSH] ; Adult [MeSH] ; Humans [MeSH] ; Infectious diseases ; Retrospective Studies [MeSH] ; Middle Aged [MeSH] ; Bacteria/genetics [MeSH] ; Diagnostics ; Communicable Diseases/virology [MeSH] ; Cohort Studies [MeSH] ; Brief Report ; Male [MeSH] ; Bacteria/classification [MeSH] ; Young Adult [MeSH] ; Metagenomics/methods [MeSH] ; Bacteria/isolation ; Communicable Diseases/diagnosis [MeSH], Bacteria, Adolescent, Brief Report, High-Throughput Nucleotide Sequencing, Middle Aged, Communicable Diseases, Cohort Studies, Young Adult, Humans, Female, Metagenomics, Retrospective Studies, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
hybrid