Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RFOS - Repository of...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Artificial Intelligence Review
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reusable components for partitioning clustering algorithms

Authors: Delibašić, Boris; Kirchner, Kathrin; Ruhland, Johannes; Jovanović, Miloš; Vukićević, Milan;

Reusable components for partitioning clustering algorithms

Abstract

Clustering algorithms are well-established and widely used for solving data-mining tasks. Every clustering algorithm is composed of several solutions for specific sub-problems in the clustering process. These solutions are linked together in a clustering algorithm, and they define the process and the structure of the algorithm. Frequently, many of these solutions occur in more than one clustering algorithm. Mostly, new clustering algorithms include frequently occurring solutions to typical sub-problems from clustering, as well as from other machine-learning algorithms. The problem is that these solutions are usually integrated in their algorithms, and that original algorithms are not designed to share solutions to sub-problems outside the original algorithm easily. We propose a way of designing cluster algorithms and to improve existing ones, based on reusable components. Reusable components are well-documented, frequently occurring solutions to specific sub-problems in a specific area. Thus we identify reusable components, first, as solutions to characteristic sub-problems in partitioning cluster algorithms, and, further, identify a generic structure for the design of partitioning cluster algorithms. We analyze some partitioning algorithms (K-means, X-means, MPCK-means, and Kohonen SOM), and identify reusable components in them. We give examples of how new cluster algorithms can be designed based on them.

Keywords

Reusable component, Cluster algorithm, MPCK-means, Kohonen SOM, K-means, Generic, Partitioning clustering, X-means

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!