Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/embc48...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Residual convolutional autoencoder combined with a non-negative matrix factorization to estimate fetal heart rate

Authors: Hugo Lafaye de Micheaux; Mariel Resendiz; Bertrand Rivet; Julie Fontecave Jallon;

Residual convolutional autoencoder combined with a non-negative matrix factorization to estimate fetal heart rate

Abstract

The fetal heart rate (fHR) plays an important role in the determination of the good health of the fetus. Beside the traditional Doppler ultrasound technique, non-invasive fetal electrocardiography (fECG) has become an interesting alternative. However, extracting clean fECG from abdominal ECG (aECG) recordings is a challenging task due to the presence of the maternal ECG component and various noise sources. In this context, we propose a deep residual convolutional autoencoder network trained on synthetic aECG simulations followed by a transfer learning phase on real aECG recordings to extract the cleanest fECG. Afterwards, we propose to use a non-negative matrix factorization based approach on the obtained fECG to estimate the fHR. Our method is evaluated on three publicly available databases demonstrating that it can provide significant performance improvement against comparative methodologies. Clinical relevance- The presented method has the advantage of estimating the fetal heart rate from a single-channel abdominal electrocardiogram without prior knowledge on the noise sources nor the maternal R-peak locations.

Keywords

Electrocardiography, Fetus, Pregnancy, Disease Progression, Humans, Female, Heart Rate, Fetal, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!