
Partial Cooperation is a paradigm and a corresponding model, proposed to represent multi-agent systems in which agents are willing to cooperate to achieve a global goal, as long as some minimal threshold on their personal utility is satisfied. Distributed local search algorithms were proposed in order to solve asymmetric distributed constraint optimization problems (ADCOPs) in which agents are partially cooperative. We contribute by: 1) extending the partial cooperative model to allow it to represent dynamic cooperation intentions, affected by changes in agents’ wealth, in accordance with social studies literature. 2) proposing a novel local search algorithm in which agents receive indications of others’ preferences on their actions and thus, can perform actions that are socially beneficial. Our empirical study reveals the advantage of the proposed algorithm in multiple benchmarks. Specifically, on realistic meeting scheduling problems it overcomes limitations of standard local search algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
