Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radio Electronics, C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radio Electronics, Computer Science, Control
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radio Electronics, Computer Science, Control
Article
License: CC BY SA
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SYSTEMATIZATION OF SPACE OF STRUCTURAL FEATURES BASED ON SELF-LEARNING METHODS FOR EFFECTIVE IMAGE RECOGNITION

Authors: Gorokhovatsky, V. A.; Berestovskyi, A. E.; Peredrii, Е. О.;

SYSTEMATIZATION OF SPACE OF STRUCTURAL FEATURES BASED ON SELF-LEARNING METHODS FOR EFFECTIVE IMAGE RECOGNITION

Abstract

The work deals with issues of clustering sets of characteristic features of images. For the construction of array of the characteristic features is used method Speeded Up Robust Features. Implemented algorithms for clustering structural descriptions of images on the basis of a self-organizing Kohonen neural network and method of grouping the difference. The object of the research are clustering methods which applied to the set of structural features. The aim is to construct a vector representations of descriptions based on clustering, which increases the speed of recognition. The subject of research is systematization a set of structural features of visual objects. Discussing the results of the application of clustering methods for structural descriptions of images in the form of sets of characteristic features to improve the performance of visual recognition of objects. For systematization and compression the feature space proposed to carry out self-study using the methods of differential grouping and Kohonen networks. The simulation and experimental study of clustering methods on examples of specific sets of characteristic features were done. The research results proves the possibility of effective representation of the descriptions in the form of a vector with integer elements. This approach can be used to solve problems of recognition and retrieval of images. As a result compact vector description of etalon images is built, quantitative estimates of clustering error are estimated, efficiency of proposed method during processing of real image database is confirmed.

Работа посвящена исследованию вопросов кластеризации для множеств характерных признаков изображений. Для построениямассива характерных признаков использован метод Speeded Up Robust Features. Реализованы алгоритмы кластеризации структурныхописаний изображений на основе самоорганизующейся нейронной сети Кохонена и метода разностного группирования. Объектомисследования есть методы кластеризации применительно к множествам структурных признаков. Целью работы является построениевекторных представлений описаний на основе кластеризации, что повышает быстродействие распознавания. Предметом исследованияявляется систематизация множеств структурных признаков визуальных объектов. Обсуждаются результаты применения методов кластеризации для структурных описаний изображений в виде множеств характерных признаков с целью повышения быстродействия распознавания визуальных объектов. Для систематизации и сжатия пространства признаков предложено осуществить самообучение с применением методов разностного группирования и сетей Кохонена.Проведено моделирование и экспериментальные исследования методов кластеризации на примерах конкретных множествхарактерных признаков. Результаты исследований доказывают возможность эффективного представления описаний в виде вектора сцелочисленными элементами. Данный подход может использоваться для решения задач распознавания и поиска изображений.В результате построено компактное векторное описание эталонов, получены количественные оценки ошибки кластеризации,подтверждена работоспособность методов для прикладной базы изображений.

Keywords

компьютерное зрение, распознавание изображений, характерные признаки, структурное описание изображения, метод SURF, кластеризация, нейронная сеть, метод разностного группирования, сеть Кохонена, ошибка квантования, computer vision, image recognition, characteristic signs, structural description of image, method SURF, clusterization, neural network, differential grouping method, Kohonen’s neural network, quantization error.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Beta
sdg_colorsSDGs:
Related to Research communities