
doi: 10.1155/2014/904640
We consider a nonsmooth multiobjective programming problem where the functions involved are nondifferentiable. The class of univex functions is generalized to a far wider class of (φ,α,ρ,σ)-dI-V-type I univex functions. Then, through various nontrivial examples, we illustrate that the class introduced is new and extends several known classes existing in the literature. Based upon these generalized functions, Karush-Kuhn-Tucker type sufficient optimality conditions are established. Further, we derive weak, strong, converse, and strict converse duality theorems for Mond-Weir type multiobjective dual program.
Numerical optimization and variational techniques, Multi-objective and goal programming
Numerical optimization and variational techniques, Multi-objective and goal programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
