
Jour après jour, il devient plus facile de tempérer les images numériques. Ainsi, les gens ont besoin de diverses techniques de détection d'images contrefaites. Dans cet article, nous présentons des techniques de détection d'images contrefaites pour deux des techniques de falsification d'images les plus courantes ; copier-déplacer et épisser. Nous utilisons la technique des points de correspondance après le processus d'extraction de caractéristiques à l'aide de SIFT et SURF. Pour la détection d'épissures, nous avons extrait les bords des images intégrales des composants d'images Y, C b et Cr. GLCM est appliqué pour chaque image intégrale de bord et le vecteur de caractéristiques est formé. Le vecteur de caractéristiques est ensuite introduit dans un classificateur SVM. Pour le copier-déplacer, les résultats montrent que l'extraction de caractéristiques de SURF peut être plus efficace que SIFT, où nous avons atteint une précision de 80 % de détection d'images tempérées. D'autre part, le traitement de l'image dans le modèle couleur Y C b Cr donne des résultats prometteurs dans la détection d'images épissées. Nous avons atteint un taux positif réel de 99 % pour la détection d'images épissées.
Día a día se vuelve más fácil atemperar las imágenes digitales. Por lo tanto, las personas necesitan varias detecciones de imágenes falsificadas. En este documento, presentamos técnicas de detección de imágenes falsificadas para dos de las técnicas de manipulación de imágenes más comunes; copia-movimiento y empalme. Utilizamos la técnica de puntos de coincidencia después del proceso de extracción de características utilizando SIFT y SURF. Para la detección de empalme, extrajimos los bordes de las imágenes integrales de los componentes de imagen Y , C b y Cr. Se aplica GLCM para cada imagen integral de borde y se forma el vector de características. El vector de características se alimenta a un clasificador SVM. Para el copiado-movimiento, los resultados muestran que la extracción de características de navegación puede ser más eficiente que SIFT, donde logramos una precisión del 80% para detectar imágenes templadas. Por otro lado, se encuentra que el procesamiento de la imagen en el modelo de color Y C b Cr da resultados prometedores en la detección de imágenes de empalme. Hemos logrado una tasa positiva verdadera del 99% para detectar imágenes de empalme.
Day for day it becomes easier to temper digital images.Thus, people are in need of various forgery image detection.In this paper, we present forgery image detection techniques for two of the most common image tampering techniques; copy-move and splicing.We use match points technique after feature extraction process using SIFT and SURF.For splicing detection, we extracted the edges of the integral images of Y , C b , and Cr image components.GLCM is applied for each edge integral image and the feature vector is formed.The feature vector is then fed to a SVM classifier.For the copy-move, the results show that SURF feature extraction can be more efficient than SIFT, where we achieved 80% accuracy of detecting tempered images.On the other hand, processing the image in Y C b Cr color model is found to give promising results in splicing image detection.We have achieved 99% true positive rate for detecting splicing images.
يومًا بعد يوم، يصبح من الأسهل تلطيف الصور الرقمية. وبالتالي، يحتاج الناس إلى اكتشاف صور التزوير المختلفة. في هذه الورقة، نقدم تقنيات الكشف عن صور التزوير لاثنين من أكثر تقنيات العبث بالصور شيوعًا ؛ نقل النسخ والربط. نستخدم تقنية نقاط التطابق بعد عملية استخراج الميزات باستخدام الغربلة و SURF. للكشف عن الربط، استخرجنا حواف الصور المتكاملة لمكونات صور Y و C b و Cr. يتم تطبيق GLCM لكل صورة متكاملة للحافة ويتم تشكيل متجه الميزة. ثم يتم تغذية متجه الميزة إلى مصنف SVM. بالنسبة لنقل النسخ، تظهر النتائج أن استخراج ميزة التصفح يمكن أن يكون أكثر كفاءة من الغربلة، حيث حققنا دقة 80 ٪ في الكشف عن الصور المقسّاة. من ناحية أخرى، تم العثور على معالجة الصورة في نموذج ألوان Y b Cr لإعطاء نتائج واعدة في الكشف عن الصور. لقد حققنا معدلًا إيجابيًا حقيقيًا بنسبة 99 ٪ للكشف عن صور الربط.
Advanced Techniques in Bioimage Analysis and Microscopy, Autofocusing in Microscopy and Photography, Artificial intelligence, Copy-Move Forgery, Feature (linguistics), Biophysics, Geometry, Information technology, Pattern recognition (psychology), Engineering, Resampling Detection, Point (geometry), Image processing, Biochemistry, Genetics and Molecular Biology, Media Technology, Image Forgery Detection, Image (mathematics), FOS: Mathematics, Camera Model Identification, Splicing Detection, Life Sciences, Linguistics, QA75.5-76.95, T58.5-58.64, Computer science, FOS: Philosophy, ethics and religion, Philosophy, Electronic computers. Computer science, Computer Science, Physical Sciences, FOS: Languages and literature, Feature extraction, Computer vision, Computer Vision and Pattern Recognition, Digital Image Forgery Detection and Identification, Feature detection (computer vision), Mathematics
Advanced Techniques in Bioimage Analysis and Microscopy, Autofocusing in Microscopy and Photography, Artificial intelligence, Copy-Move Forgery, Feature (linguistics), Biophysics, Geometry, Information technology, Pattern recognition (psychology), Engineering, Resampling Detection, Point (geometry), Image processing, Biochemistry, Genetics and Molecular Biology, Media Technology, Image Forgery Detection, Image (mathematics), FOS: Mathematics, Camera Model Identification, Splicing Detection, Life Sciences, Linguistics, QA75.5-76.95, T58.5-58.64, Computer science, FOS: Philosophy, ethics and religion, Philosophy, Electronic computers. Computer science, Computer Science, Physical Sciences, FOS: Languages and literature, Feature extraction, Computer vision, Computer Vision and Pattern Recognition, Digital Image Forgery Detection and Identification, Feature detection (computer vision), Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
