Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics of Operations Research
Article . 2022 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Efficient Implementation of the Matrix Exponentiated Gradient Algorithm for Low-Rank Matrix Optimization

Authors: Dan Garber; Atara Kaplan;

On the Efficient Implementation of the Matrix Exponentiated Gradient Algorithm for Low-Rank Matrix Optimization

Abstract

Convex optimization over the spectrahedron, that is, the set of all real n × n positive semidefinite matrices with unit trace, has important applications in machine learning, signal processing, and statistics, mainly as a convex relaxation for optimization problems with low-rank matrices. It is also one of the most prominent examples in the theory of first order methods for convex optimization in which non-Euclidean methods can be significantly preferable to their Euclidean counterparts. In particular, the desirable choice is the matrix exponentiated gradient (MEG) method, which is based on the Bregman distance induced by the (negative) von Neumann entropy. Unfortunately, implementing MEG requires a full singular value decomposition (SVD) computation on each iteration, which is not scalable to high-dimensional problems. In this work, we propose efficient implementations of MEG, with both deterministic and stochastic gradients, which are tailored for optimization with low-rank matrices, and only use a single low-rank SVD computation on each iteration. We also provide efficiently computable certificates for the correct convergence of our methods. Mainly, we prove that, under a strict complementarity condition, the suggested methods converge from a warm-start initialization with similar rates to their full SVD–based counterparts. Finally, we bring empirical experiments that both support our theoretical findings and demonstrate the practical appeal of our methods.Funding: This work was supported by the Israel Science Foundation [Grant 1108/18].

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Optimization and Control (math.OC), FOS: Mathematics, Machine Learning (stat.ML), Mathematics - Optimization and Control, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green