
This paper describes the formulation of a nonlinear mixed integer programming model for a large-scale product development and distribution problem and the design and computational implementation of a special purpose algorithm to solve the model. The results described demonstrate that integrating the art of modeling with the sciences of solution methodology and computer implementation provides a powerful approach for attacking difficult problems. The efforts described here were successful because they capitalized on the wealth of existing modeling technology and algorithm technology, the availability of efficient and reliable optimization, matrix generation and graphics software, and the speed of large-scale computer hardware. The model permitted the combined use of decomposition, general linear programming and network optimization within a branch and bound algorithm to overcome mathematical complexity. The computer system reliably found solutions with considerably better objective function values 30 to 50 times faster than had been achieved using general purpose optimization software alone. Throughout twenty months of daily use, the system was credited with providing insights and suggesting strategies that led to very large dollar savings.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
