
Abstract Clustering is an important technique to deal with large scale data which are explosively created in internet. Most data are high-dimensional with a lot of noise, which brings great challenges to retrieval, classification and understanding. No current existing approach is “optimal” for large scale data. For example, DBSCAN requires O(n2) time, Fast-DBSCAN only works well in 2 dimensions, and ρ-Approximate DBSCAN runs in O(n) expected time which needs dimension D to be a relative small constant for the linear running time to hold. However, we prove theoretically and experimentally that ρ-Approximate DBSCAN degenerates to an O(n2) algorithm in very high dimension such that 2D > > n. In this paper, we propose a novel local neighborhood searching technique, and apply it to improve DBSCAN, named as NQ-DBSCAN, such that a large number of unnecessary distance computations can be effectively reduced. Theoretical analysis and experimental results show that NQ-DBSCAN averagely runs in O(n*log(n)) with the help of indexing technique, and the best case is O(n) if proper parameters are used, which makes it suitable for many realtime data.
DBSCAN ρ-Approximate DBSCANNQ-DBSCAN
DBSCAN ρ-Approximate DBSCANNQ-DBSCAN
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 148 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
