Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
OPUS Augsburg
Article . 2024
Data sources: OPUS Augsburg
Computability
Article . 2024 . Peer-reviewed
Data sources: Crossref
Computability
Article . 2024
Data sources: mEDRA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reifying dynamical algebra: Maximal ideals in countable rings, constructively

Reifying dynamical algebra: maximal ideals in countable rings, constructively
Authors: Blechschmidt, Ingo; Schuster, Peter;

Reifying dynamical algebra: Maximal ideals in countable rings, constructively

Abstract

The existence of a maximal ideal in a general nontrivial commutative ring is tied together with the axiom of choice. Following Berardi, Valentini and thus Krivine but using the relative interpretation of negation (that is, as “implies 0 = 1”) we show, in constructive set theory with minimal logic, how for countable rings one can do without any kind of choice and without the usual decidability assumption that the ring is strongly discrete (membership in finitely generated ideals is decidable). By a functional recursive definition we obtain a maximal ideal in the sense that the quotient ring is a residue field (every noninvertible element is zero), and with strong discreteness even a geometric field (every element is either invertible or else zero). Krull’s lemma for the related notion of prime ideal follows by passing to rings of fractions. By employing a construction variant of set-theoretic forcing due to Joyal and Tierney, we expand our treatment to arbitrary rings and establish a connection with dynamical algebra: We recover the dynamical approach to maximal ideals as a parametrized version of the celebrated double negation translation. This connection allows us to give formal a priori criteria elucidating the scope of the dynamical method. Along the way we do a case study for proofs in algebra with minimal logic, and generalize the construction to arbitrary inconsistency predicates. A partial Agda formalization is available at an accompanying repository.11 See https://github.com/iblech/constructive-maximal-ideals/. This text is a revised and extended version of the conference paper (In Revolutions and Revelations in Computability. 18th Conference on Computability in Europe (2022) Springer). The conference paper only briefly sketched the connection with dynamical algebra; did not compare this connection with other flavors of set-theoretic forcing; and sticked to the case of commutative algebra only, passing on the generalization to inconsistency predicates and well-orders.

Related Organizations
Keywords

constructive commutative algebra, maximal ideals, dynamical algebra, set-theoretic forcing, Computability and recursion theory, Maximal ideals, set-theoretic forcing, constructive commutative algebra, dynamical algebra

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!