
This work addresses the resolution of penalized least-squares problems using the proximal gradient algorithm (PGA). PGA can be accelerated by preconditioning strategies. However, typical effective choices of preconditioners may correspond to intricate matrices that are not easily inverted, leading to increased complexity in the computation of the proximity step. To relax these requirements, we propose an unmatched preconditioning approach where two metrics are used in the gradient step and the proximity step. We provide convergence conditions for this new iterative scheme and characterize its limit point. Simulations for tomographic image reconstruction from undersampled measurements show the benefits of our approach for various simple choices of metrics.
Convergence analysis, Matrix approximation, Image reconstruction, Proximal methods, Computed tomography, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
Convergence analysis, Matrix approximation, Image reconstruction, Proximal methods, Computed tomography, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
