
Background: With the increasing availability of healthcare data, predictive modeling finds many applications in the biomedical domain, such as the evaluation of the level of risk for various conditions, which in turn can guide clinical decision making. However, it is unclear how knowledge graph data representations and their embedding, which are competitive in some settings, could be of interest in biomedical predictive modeling. Method: We simulated synthetic but realistic data of patients with intracranial aneurysm and experimented on the task of predicting their clinical outcome. We compared the performance of various classification approaches on tabular data versus a graph-based representation of the same data. Next, we investigated how the adopted schema for representing first individual data and second temporal data impacts predictive performances. Results: Our study illustrates that in our case, a graph representation and Graph Convolutional Network (GCN) embeddings reach the best performance for a predictive task from observational data. We emphasize the importance of the adopted schema and of the consideration of literal values in the representation of individual data. Our study also moderates the relative impact of various time encoding on GCN performance.
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Knowledge graph embedding, Clinical data, Outcome prediction, Graph convolutional networks, Temporal knowledge graph, Machine Learning (cs.LG)
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Knowledge graph embedding, Clinical data, Outcome prediction, Graph convolutional networks, Temporal knowledge graph, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
