Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL Descartesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Conference object . 2024
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large-Scale Optimization of Electric Vehicle Charging Infrastructure

Authors: Li, Chuan; Zhao, Shunyu; Gauthier, Vincent; Moungla, Hassine;

Large-Scale Optimization of Electric Vehicle Charging Infrastructure

Abstract

The rapid adoption of electric vehicles (EVs) is driving increasing demand for efficient and strategically placed charging stations. While numerous studies have explored optimization methods for the placement of EV charging stations, most focus on smaller geographic areas, leaving the challenge of optimizing station distribution across larger regions unresolved. This paper presents a novel approach for optimizing both the placement and capacity of EV charging stations using the H3 spatial grid system and queuing theory. By leveraging the hexagonal structure of the H3 grid, we accurately model spatial data and analyze EV charging demands in both urban and non-urban areas. Queuing theory is employed to predict station utilization and optimize the allocation of charging points, minimizing user wait times and ensuring efficient resource distribution. The proposed method is adaptable to future growth in EV adoption and addresses infrastructure needs in both high-demand and underserved regions. This paper outlines the framework developed for the 13th SIGSPATIAL Cup (GISCUP 2024), which achieved top-5 performance. Results based on real-world data demonstrate the model's effectiveness in enhancing the spatial distribution of charging stations, improving accessibility and efficiency in EV infrastructure.

Keywords

• Information systems Large-Scale Optimization, CCS Concepts, EV Infrastructure Planning, Queuing Theory, Applied computing → Transportation, Smart Spatial Grid, Spatial Optimization, • Computing methodologies → Machine learning, [INFO] Computer Science [cs], Electric Vehicle Charging, Geospatial Data Processing, CCS Concepts Applied computing → Transportation • Computing methodologies → Machine learning • Information systems Large-Scale Optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green