
This paper investigates energy management systems in micro-grid using an optimization-based approach, optimizing the operating cost related to the energy purchased from the utility grid, the operation cost of the energy storage system, and revenue from the selling of energy to the utility grid. This research uses a constrained Particle Swarm Optimization-Based Model Predictive Control (CPSO-MPC) and a Linear Program-Based Optimization approach to solve the constrained optimization problem formulated in micro-grid energy management. Due to the absence of constraint management strategies in the traditional PSO algorithm, it is incapable of solving constrained optimization problems. Hence, to overcome this drawback, an intuitive approach known as Deb’s rule is applied to handle the constraints. The simulation results show the modified particle swarm optimization’s effective performance embedded in the model predictive control algorithm compared to the linear programming algorithm.
Energy storage, Particle swarm optimization, Linear programming, Model predictive control, Electrical engineering. Electronics. Nuclear engineering, Energy management system, MATLAB/Simulink, TK1-9971
Energy storage, Particle swarm optimization, Linear programming, Model predictive control, Electrical engineering. Electronics. Nuclear engineering, Energy management system, MATLAB/Simulink, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 68 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
