Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MODELING THERMAL BEHAVIOR IN HIGH-POWER SEMICONDUCTOR DEVICES USING THE MODIFIED OHM’S LAW

Authors: Alex Kımuya;

MODELING THERMAL BEHAVIOR IN HIGH-POWER SEMICONDUCTOR DEVICES USING THE MODIFIED OHM’S LAW

Abstract

This paper addresses the challenge of thermal management in high-power semiconductor devices, where increasing power densities and complex operating environments demand more accurate thermal prediction methods. Traditional approaches often rely on simplified models that do not account for the crucial factor of temperature-dependent resistance variations. This limitation leads to inaccurate device temperature predictions, potentially compromising device reliability. This work proposes a novel approach for thermal management by introducing the first empirical application of a Modified Ohm’s Law. This modified law incorporates an exponential term to account for the non-linear relationship between temperature, current, and resistance. The paper demonstrates through simulations and empirical validation that the Modified Ohm’s Law offers a more accurate representation of thermal behavior compared to the standard version. This translates to more precise predictions of device temperature, especially during periods of rapid temperature changes. The validation process goes beyond simply establishing the Modified Ohm’s Law. It provides valuable insights into the thermal dynamics of the device, allowing for the refinement of simulation parameters used to assess various cooling strategies. These strategies include simulating different heat sink geometries and materials, modifying airflow rates over the device’s surface, and exploring the impact of Thermal Interface Materials (TIMs) between the device and the heat sink. By incorporating these elements, the simulations provide a more comprehensive picture of the device’s thermal behavior under various operating conditions and cooling configurations. Ultimately, this paper not only advances the theoretical understanding of thermal management but also offers practical benefits. Through enabling more accurate thermal predictions, the Modified Ohm’s Law model paves the way for informed decision-making in device design and optimization.

Keywords

General Physics, Malzeme Fiziği, Material Physics, Nonlinear relationship;Thermal management;High-power semiconductor devices;Modified Ohm’s Law;Temperature-dependent resistance;Heat dissipation;Simulation;Thermal behavior;Accuracy;Device temperature, Genel Fizik, Elektrik Devreleri ve Sistemleri, High Voltage, Electrical Circuits and Systems, Yüksek Gerilim

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!