Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Sout...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EXACT SOLUTIONS OF THE HIROTA EQUATION USING THE SINE-COSINE METHOD

ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЯ ХИРОТА С ПОМОЩЬЮ МЕТОДА СИНУС–КОСИНУС
Authors: G.N. Shaikhova; Y.S. Kalykbay;

EXACT SOLUTIONS OF THE HIROTA EQUATION USING THE SINE-COSINE METHOD

Abstract

Nonlinear partial differential equations of mathematical physics are considered to be major subjects in physics. The study of exact solutions for nonlinear partial differential equations plays an important role in many phenomena in physics. Many effective and viable methods for finding accurate solutions have been established. In this work, the Hirota equation is examined. This equation is a nonlinear partial differential equation and is a combination of the nonlinear Schrödinger equation and the complex modified Korteweg–de Vries equation. The nonlinear Schrödinger equation is the physical model and occurs in various areas of physics, including nonlinear optics, plasma physics, superconductivity, and quantum mechanics. The complex modified Korteweg–de Vries equation has been applied as a model for the nonlinear evolution of plasma waves and represents the physical model that incorporates the propagation of transverse waves in a molecular chain model and in a generalized elastic solid. To find exact solutions of the Hirota equation, the sine-cosine method is applied. This method is an effective tool for searching exact solutions of nonlinear partial differential equations in mathematical physics. The obtained solutions can be applied when explaining some of the practical problems of physics.

Keywords

метод синус-косинуc, решение, УДК 517.3, уравнение Хироты, NLS equations (nonlinear Schrödinger equations), nonlinearity, ordinary differential equation, нелинейность, sine-cosine method, дифференциальное уравнение в частных производных, Hirota equation, ordinary differentialequation, partial differential equation, обыкновенное дифференциальное уравнение, solution, УДК 517.1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold
Beta
sdg_colorsSDGs:
Related to Research communities