
doi: 10.14529/mmph210306
Nonlinear partial differential equations of mathematical physics are considered to be major subjects in physics. The study of exact solutions for nonlinear partial differential equations plays an important role in many phenomena in physics. Many effective and viable methods for finding accurate solutions have been established. In this work, the Hirota equation is examined. This equation is a nonlinear partial differential equation and is a combination of the nonlinear Schrödinger equation and the complex modified Korteweg–de Vries equation. The nonlinear Schrödinger equation is the physical model and occurs in various areas of physics, including nonlinear optics, plasma physics, superconductivity, and quantum mechanics. The complex modified Korteweg–de Vries equation has been applied as a model for the nonlinear evolution of plasma waves and represents the physical model that incorporates the propagation of transverse waves in a molecular chain model and in a generalized elastic solid. To find exact solutions of the Hirota equation, the sine-cosine method is applied. This method is an effective tool for searching exact solutions of nonlinear partial differential equations in mathematical physics. The obtained solutions can be applied when explaining some of the practical problems of physics.
метод синус-косинуc, решение, УДК 517.3, уравнение Хироты, NLS equations (nonlinear Schrödinger equations), nonlinearity, ordinary differential equation, нелинейность, sine-cosine method, дифференциальное уравнение в частных производных, Hirota equation, ordinary differentialequation, partial differential equation, обыкновенное дифференциальное уравнение, solution, УДК 517.1
метод синус-косинуc, решение, УДК 517.3, уравнение Хироты, NLS equations (nonlinear Schrödinger equations), nonlinearity, ordinary differential equation, нелинейность, sine-cosine method, дифференциальное уравнение в частных производных, Hirota equation, ordinary differentialequation, partial differential equation, обыкновенное дифференциальное уравнение, solution, УДК 517.1
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
