
arXiv: 1709.07598
Digital retouching of face images is becoming more widespread due to the introduction of software packages that automate the task. Several researchers have introduced algorithms to detect whether a face image is original or retouched. However, previous work on this topic has not considered whether or how accuracy of retouching detection varies with the demography of face images. In this paper, we introduce a new Multi-Demographic Retouched Faces (MDRF) dataset, which contains images belonging to two genders, male and female, and three ethnicities, Indian, Chinese, and Caucasian. Further, retouched images are created using two different retouching software packages. The second major contribution of this research is a novel semi-supervised autoencoder incorporating "subclass" information to improve classification. The proposed approach outperforms existing state-of-the-art detection algorithms for the task of generalized retouching detection. Experiments conducted with multiple combinations of ethnicities show that accuracy of retouching detection can vary greatly based on the demographics of the training and testing images.
Accepted in International Joint Conference on Biometrics, 2017
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
