
The Adaptive Large Neighborhood Search (ALNS) algorithm has shown considerable success in solving combinatorial optimization problems (COPs). Nonetheless, the performance of ALNS relies on the proper configuration of its selection and acceptance parameters, which is known to be a complex and resource-intensive task. To address this, we introduce a Deep Reinforcement Learning (DRL) based approach called DR-ALNS that selects operators, adjusts parameters, and controls the acceptance criterion throughout the search. The proposed method aims to learn, based on the state of the search, to configure ALNS for the next iteration to yield more effective solutions for the given optimization problem. We evaluate the proposed method on an orienteering problem with stochastic weights and time windows, as presented in an IJCAI competition. The results show that our approach outperforms vanilla ALNS, ALNS tuned with Bayesian optimization, and two state-of-the-art DRL approaches that were the winning methods of the competition, achieving this with significantly fewer training observations. Furthermore, we demonstrate several good properties of the proposed DR-ALNS method: it is easily adapted to solve different routing problems, its learned policies perform consistently well across various instance sizes, and these policies can be directly applied to different problem variants.
Deep reinforcement learning, FOS: Computer and information sciences, Computer Science - Machine Learning, Adaptive large neighborhood search, Artificial Intelligence and Robotics, Computer Sciences, Computer Science - Artificial Intelligence, 004, Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Algorithm configuration
Deep reinforcement learning, FOS: Computer and information sciences, Computer Science - Machine Learning, Adaptive large neighborhood search, Artificial Intelligence and Robotics, Computer Sciences, Computer Science - Artificial Intelligence, 004, Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Algorithm configuration
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
