Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Heat and Mass Transf...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Heat and Mass Transfer
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CFD simulation of multicomponent mixture within a packed Deethanizer column

Authors: Hajer Troudi; Moncef Ghiss; Mohamed Ellejmi; Zoubeir Tourki;

CFD simulation of multicomponent mixture within a packed Deethanizer column

Abstract

The aim of this study is to develop a model of a Deethanizer Column (DC). A fuel mixture of Methane CH4, Ethane C2H6, Propane C3H8, N-butane n-C4H10 and some hydrocarbons is used to get an insight on the DC operation. A multicomponent gas-liquid flow in DC is investigated using the Computational Fluid Dynamics (CFD) method. The droplet size change, the droplet surface temperature and the pressure drop are investigated with a Eulerian-Lagrangian model using ANSYS-Fluent R15. The computation results are compared with the experimental data of a binary and multicomponent mixture in a stationary droplet. A good agreement between them is established. Additionally, the predicted pressure drop obtained at varied porosity is compared with the data got from the Ergun formulation. The results show that the presence of CH4 and C2H6 has a big impact on the droplet surface temperature. This temperature initially reaches the lower value because of the fastest evaporation of light components (CH4 and C2H6) rather than the heavy ones (C5+). The current work provides a better understanding of the behavior of light components in DC.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!