Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Science &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/6j...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/7b...
Other literature type . 2024
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advanced impedance mismatch technique for detecting faults in photovoltaic systems

تقنية عدم تطابق المعاوقة المتقدمة للكشف عن الأعطال في الأنظمة الكهروضوئية
Authors: Najwa Lamdihine; Mohammed Ouassaid;

Advanced impedance mismatch technique for detecting faults in photovoltaic systems

Abstract

AbstractThis paper presents a comprehensive exploration of the Advanced Impedance Mismatch Technique (AIMT), a novel approach designed for the accurate detection of simultaneous and varied faults within photovoltaic (PV) systems. This investigation integrates a spectrum of fault detection strategies, pinpointing reflectometry as a notably effective tool. Despite its utility, conventional reflectometry applications face critical constraints, notably the limitation to identify only the primary fault location within a PV array and the inability to distinguish between different fault types. This work introduces an innovative mathematical model that estimates the impedance of PV modules, enhancing the reflectometry method to enable the precise identification and localization of multiple defective modules within a string. The proposed technique exhibits a remarkable sensitivity to detect slight impedance differences between a functional PV string and one with defective modules. The validity of the AIMT's mathematical model is corroborated through simulation experiments on a string of seven PV modules afflicted with multiple simultaneous faults. These experiments rigorously evaluate the technique's accuracy in pinpointing the locations of defective modules within a PV string. The outcomes of our proposed ‐times faster AIMT reveal a strong concordance between the simulated reflective signals and the impedance values forecasted by the model, highlighting the proposed method's proficiency in the detailed detection and diagnosis of progressive faults within PV systems.

Keywords

reflectometry technique, Technology, Photovoltaic Arrays, Science, Failure Analysis of Integrated Circuits, impedance change, Automotive engineering, Reliability engineering, Engineering, Laser Voltage Probing, FOS: Electrical engineering, electronic engineering, information engineering, Detection and Localization of Arc Faults in Electrical Systems, Electrical and Electronic Engineering, Fault Localization, Photovoltaic system, Reflectometry, Energy, Renewable Energy, Sustainability and the Environment, Focused Impedance Measurement, Electronic engineering, T, Physics, Q, Photovoltaic Maximum Power Point Tracking Techniques, Acoustics, microscale fault localization, Computer science, Materials science, Detection, Electrical impedance, Electrical engineering, PV defects, Physical Sciences, photovoltaic fault detection

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold