
AbstractDesign by Transformation (DxT) is an approach to software development that encodes domain-specific programs as graphs and expert design knowledge as graph transformations. The goal of DxT is to mechanize the generation of highly-optimized code. This paper demonstrates how DxT can be used to transform sequential specifications of an important set of Dense Linear Algebra (DLA) kernels, the level-3 Basic Linear Algebra Subprograms (BLAS3), into high-performing library routines targeting distributed-memory (cluster) architectures. Getting good BLAS3 performance for such platforms requires deep domain knowledge, so their implementations are manually coded by experts. Unfortunately, there are few such experts and developing the full variety of BLAS3 implementations takes a lot of repetitive effort. A prototype tool, DxTer, automates this tedious task. We explain how we build on previous work to represent loops and multiple loop-based algorithms in DxTer. Performance results on a BlueGene/P parallel supercomputer show that the generated code meets or beats implementations that are hand-coded by a human expert and outperforms the widely used ScaLAPACK library.
dense linear algebra, program generation, distributed-memory computing, high-performance software
dense linear algebra, program generation, distributed-memory computing, high-performance software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
