Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2000
Data sources: zbMATH Open
International Journal of Algebra and Computation
Article . 2000 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2000
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

KNUTH–BENDIX FOR GROUPS WITH INFINITELY MANY RULES

Knuth-Bendix for groups with infinitely many rules
Authors: David B. A. Epstein; Paul J. Sanders;

KNUTH–BENDIX FOR GROUPS WITH INFINITELY MANY RULES

Abstract

We introduce a new class of groups with solvable word problem, namely groups specified by a confluent set of short-lex-reducing Knuth–Bendix rules which form a regular language. This simultaneously generalizes short-lex-automatic groups and groups with a finite confluent set of short-lex-reducing rules. We describe a computer program which looks for such a set of rules in an arbitrary finitely presented group. Our main theorem is that our computer program finds the set of rules, if it exists, given enough time and space. (This is an optimistic description of our result — for the more pessimistic details, see the body of the paper.) The set of rules is embodied in a finite state automaton in two variables. A central feature of our program is an operation, which we call welding, used to combine existing rules with new rules as they are found. Welding can be defined on arbitrary finite state automata, and we investigate this operation in abstract, proving that it can be considered as a process which takes as input one regular language and outputs another regular language. In our programs we need to convert several nondeterministic finite state automata to deterministic versions accepting the same language. We show how to improve somewhat on the standard subset construction, due to special features in our case. We axiomatize these special features, in the hope that these improvements can be used in other applications. The Knuth–Bendix process normally spends most of its time in reduction, so its efficiency depends on doing reduction quickly. Standard data structures for doing this can become very large, ultimately limiting the set of presentations of groups which can be so analyzed. We are able to give a method for rapid reduction using our much smaller two variable automaton, encoding the (usually infinite) regular language of rules found so far. Time taken for reduction in a given group is a small constant times the time taken for reduction in the best schemes known (see [5]), which is not too bad since we are reducing with respect to an infinite set of rules, whereas known schemes use a finite set of rules. We hope that the method described here might lead to the computation of automatic structures in groups for which this is currently infeasible. Some proofs have been omitted from this paper in the interests of brevity. Full details are provided in [4].

Related Organizations
Keywords

Generators, relations, and presentations of groups, Word problems, other decision problems, connections with logic and automata (group-theoretic aspects), Group Theory (math.GR), 20F10,20-04,68Q42 (Primary), solvable word problem, regular languages, 20F10,20-04,68Q42 (Primary); 03D40,20F32 (Secondary), finitely presented groups, Grammars and rewriting systems, FOS: Mathematics, Knuth-Bendix procedures, 03D40,20F32 (Secondary), finite state automata, Word problems, etc. in computability and recursion theory, Geometric group theory, automatic groups, Mathematics - Group Theory, word reductions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze