Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal microelectromechanical sensor construction

Authors: Egor Kiselev; Tetyana Krytska; Nina Stroiteleva; Konstantin Turyshev;

Thermal microelectromechanical sensor construction

Abstract

The problem of constructing a thermal sensor based on the technology of microelectromechanical systems is solved by structural and circuit integration of capacitance-dependent and thermomechanical parts. For this, the use of a MOS transistor (capacitance-dependent part) with a gate in the form of a bimorph membrane (thermomechanical part), which performs cyclic oscillations under the influence of heating from a sensitive element and subsequent cooling, is proposed. The novelty of the proposed sensor is the provision of a frequency-dependent output signal without the use of additional generator circuits. This makes it easier to combine the sensor with digital signal processing systems and reduce the influence of transmission lines on measurement accuracy. Also, the advantages of the sensor include reduced overall dimensions, which is achieved due to the vertical integration of its elements. Model studies of the sensor are carried out and on their basis circuit and software-hardware solutions for determining the temperature of the sensitive element are proposed. It is shown that the use of logarithmic dependence to approximate the influence of the temperature of the sensitive element on the output pulse frequency of the sensor minimizes the measurement error to 3.08 %. The composition of the information and measurement system, which contains a thermal sensor, a sensor signal pre-processing circuit and measurement processing unit using the Atmega328 microcontroller on the platform of the unified ArduinoUno module, is determined. It is shown that the total error of temperature determination in the developed system does not exceed 4.18 % in the temperature range of the sensor element from 20 °C to 47 °C. The program code for the microcontroller part of the information and measurement system is developed, which occupies 12 % of the program memory and 4.9 % of the dynamic memory of the unified module. The proposed thermal microelectromechanical sensor can be used for contact measurement of the temperature of gaseous and liquid media, recording of optical radiation and microwave signals

Keywords

MOS transistor; bimorph membrane; sensitive element; pulse frequency; microcontroller, UDC 621.3.084.2, МОН-транзистор; біморфна мембрана; чутливий елемент; частота імпульсів; мікроконтролер, МОП-транзистор; биморфная мембрана; чувствительный элемент; частота импульсов; микроконтроллер

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 5
  • 4
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
4
5
gold